

Probing p_T -dependent flow vector fluctuations with ALICE

5th international conference on particle physics and astrophysics

Emil Gorm Nielsen for the ALICE collaboration

Niels Bohr Institute October 7th

<u>emil.gorm.nielsen@cern.ch</u>

THE VELUX FOUNDATIONS VILLUM FONDEN 🚿 VELUX FONDEN

Quark-Gluon Plasma

- Early universe dominated by hot, dense matter
- Deconfined state of quarks and gluons \rightarrow Quark-gluon plasma (QGP)
- QGP is recreated in experiments with heavy-ion collisions ("little bangs")
- Experiments at the LHC probe hightemperature/low baryon chemical potential region

Heavy-ion collisions

- After thermalization time $\tau \sim 1$ fm/c \rightarrow System described by hydrodynamics
- Experiments seek to determine initial conditions (IC) and the QGP properties
 - Shear viscosity η/s and bulk viscosity ζ/s
- Hydrodynamic models can constrain IC and η/s , ζ/s
- Strong interactions transfer initial geometric anisotropy into final state momentum-space azimuthal anisotropy
 - Anisotropic flow, an observable sensitive to IC, η/s , ζ/s

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

Central collision

Peripheral collision

Anisotropic flow

 Fourier expansion of azimuthal distribution of emitted particles:

$$\frac{dN}{d\varphi} \propto f(\varphi) = \frac{1}{2\pi} \left[1 + 2\sum_{n=1}^{\infty} V_n e^{in\varphi} \right]$$

- Complex flow vector $V_n = v_n e^{in\Psi_n}$
- with magnitude:

$$v_n = \langle \cos n [\varphi - \Psi_n] \rangle$$

• and flow angle Ψ_n

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

4

Anisotropic flow

 Fourier expansion of azimuthal distribution of emitted particles:

$$\frac{dN}{d\varphi} \propto f(\varphi) = \frac{1}{2\pi} \left[1 + 2 \sum_{n=1}^{\infty} V_n e^{in\varphi} \right]$$

- Complex flow vector $V_n = v_n e^{in\Psi_n}$
- with magnitude:

$$v_n = \langle \cos n [\varphi - \Psi_n] \rangle$$

• and flow angle Ψ_n

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

4

Flow vector fluctuations

- Flow vector fluctuates from collision to collision
- Measured with:

$$\frac{v_n\{2\}}{v_2[2]} = \frac{\langle v_n(p_{\rm T}) \ v_n \cos n[\Psi_n(p_{\rm T}) - \Psi_n] \rangle}{\sqrt{\langle v_n(p_{\rm T})^2 \rangle} \sqrt{\langle v_n^2 \rangle}}$$

• $v_n(p_T) \neq v_n$ and $\Psi_n(p_T) \neq \Psi_n$, then $v_n\{2\}/v_n[2] < 1$

on initial conditions and QGP properties

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

JHEP 09 (2017) 032

• New precision measurements of flow vector fluctuations \rightarrow Better constraints

Flow vector fluctuations

Another way to measure flow vector fluctuations is with factorization ratio r_n :

$$r_{n} = \frac{V_{n\Delta}(p_{\mathrm{T}}^{a}, p_{\mathrm{T}}^{t})}{\sqrt{V_{n\Delta}(p_{\mathrm{T}}^{a}, p_{\mathrm{T}}^{a})V_{n\Delta}(p_{\mathrm{T}}^{t}, p_{\mathrm{T}}^{t})}}$$

- Chooses particles from different narrow $p_{\rm T}$ bins
- Tests factorization

$$V_{n\Delta}(p_{\mathrm{T}}^{a}, p_{\mathrm{T}}^{t}) \stackrel{?}{=} v_{n}(p_{\mathrm{T}}^{a}) \times v_{n}(p_{\mathrm{T}}^{t})$$

- 1 indicates flow vector fluctuations
- New precision measurements of flow vector fluctuations \rightarrow Better constraints on initial conditions and QGP properties

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

JHEP 09 (2017) 032

The ALICE detector

- General-purpose heavy-ion experiment
- Designed to study physics of strongly interacting matter
- Capable of dealing with very large particle multiplicities

Particle selection:

 $0.2 < p_{\rm T} < 5.0 ~{\rm GeV}/c$

 $|\eta| < 0.8$

 $v_n \{2\} / v_n [2]$

 $v_n \{2\} / v_n [2]$

Deviation of $v_2\{2\}/v_2[2]$ from unity in central collisions

 $v_n\{2\}/v_n[2]$

- Deviation of $v_2\{2\}/v_2[2]$ from unity in central collisions
- Deviations increase with $p_{\rm T}$

 $v_n \{2\} / v_n [2]$

- Deviation of $v_2\{2\}/v_2[2]$ from unity in central collisions
- Deviations increase with $p_{\rm T}$
- $p_{\rm T}$ -dependent V_2 fluctuations

$v_n \{2\} / v_n [2]$

- Deviation of $v_2\{2\}/v_2[2]$ from unity in central collisions
- Deviations increase with $p_{\rm T}$
- $p_{\rm T}$ -dependent V_2 fluctuations
- Higher order harmonics (n > 2)

$v_n \{2\} / v_n [2]$

- Deviation of $v_2\{2\}/v_2[2]$ from unity in central collisions
- Deviations increase with $p_{\rm T}$
- $p_{\rm T}$ -dependent V_2 fluctuations
- Higher order harmonics (n > 2)
- $v_3\{2\}/v_3[2]$ and $v_4\{2\}/v_4[2]$ consistent with unity

$v_n \{2\} / v_n [2]$

- Deviation of $v_2\{2\}/v_2[2]$ ulletfrom unity in central collisions
- Deviations increase with $p_{\rm T}$
- $p_{\rm T}$ -dependent V_2 fluctuations ullet
- Higher order harmonics (n > 2)ightarrow
- $v_3\{2\}/v_3[2]$ and $v_4\{2\}/v_4[2]$ ulletconsistent with unity
- Suggests V_3 and V_4 does not ulletfluctuate with $p_{\rm T}$

Factorization ratio r_n

Deviation of r_2 from unity observed \rightarrow Factorization is broken

> 0.8 <mark>ر</mark> 0.9

> > 0.8

- Deviation of r_2 from unity observed \rightarrow Factorization is broken
- **Deviation increases as** difference $|p_{\rm T}^a - p_{\rm T}^t|$ increases

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

<u>ر</u>

- Deviation of r_2 from unity observed \rightarrow Factorization is broken
- **Deviation increases as** difference $|p_{T}^{a} - p_{T}^{t}|$ increases
- Strongest breakdown of factorization in central collisions

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

<u>ر</u>

- Deviation of r_2 from unity observed \rightarrow Factorization is broken
- Deviation increases as difference $|p_T^a - p_T^t|$ increases
- Strongest breakdown of factorization in central collisions
- Also predicted by hydrodynamic calculations

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

<u>_</u>

- Deviation of r_2 from unity observed \rightarrow Factorization is broken
- Deviation increases as difference $|p_{\rm T}^a - p_{\rm T}^t|$ increases
- Strongest breakdown of factorization in central collisions
- Also predicted by hydrodynamic calculations
- Factorization of V_3 not broken, or at least within few percent

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

പ

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$ $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

$C(\Psi_2^a, \Psi_2^t)$

Newly proposed observable:

$C(\Psi_2^a, \Psi_2^t)$

Newly proposed observable:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

 $< \cos 4[\Psi_2(p_T^a) - \Psi_2(p_T^t)] >$

$C(\Psi_2^a, \Psi_2^t)$

Does not depend on v_n

Newly proposed observable:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

<cos 4[$\Psi_2(p_T^a)$ - $\Psi_2(p_T^t)$]>

<cos 4[$\Psi_2(p_T^a)$ - $\Psi_2(p_T^t)$]>

$C(\Psi_2^a, \Psi_2^t)$

Newly proposed observable:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

• If $C(\Psi_n^a, \Psi_n^t) < 1$, indication of flow angle fluctuation

<cos 4[$\Psi_2(p_T^a)$ - $\Psi_2(p_T^t)$]>

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

Does not depend on v_n

Newly proposed observable:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

- If $C(\Psi_n^a, \Psi_n^t) < 1$, indication of flow angle fluctuation
- No deviation from unity within uncertainties

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

Does not depend on v_n

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

Newly proposed observable:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

- If $C(\Psi_n^a, \Psi_n^t) < 1$, indication of flow angle fluctuation
- No deviation from unity within ightarrowuncertainties
 - Hint of $C(\Psi_n^a, \Psi_n^t) < 1$ in central collisions

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

Does not depend on v_n

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

Newly proposed observable:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

- If $C(\Psi_n^a, \Psi_n^t) < 1$, indication of flow angle fluctuation
- No deviation from unity within uncertainties
 - Hint of $C(\Psi_n^a, \Psi_n^t) < 1$ in central collisions
- Suggests that flow angle does not significantly fluctuate in peripheral collisions

Emil Gorm Nielsen (NBI), ICPPA2020, 07/10/2020

Does not depend on v_n

<cos 4[$\Psi_2(p_T^a)$ - $\Psi_2(p_T^t)$]>

 $< \cos 4[\Psi_2(p_T^a)-\Psi_2(p_T^t)] >$

Correlations of flow

Symmetric cumulant

$$NSC(n,m) = \frac{\langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle}{\langle v_n^2 \rangle \langle v_m^2 \rangle}$$

Probes correlation between v_n and v_m

Differential study might bring better sensitivity to IC and QGP properties

$$NSC(n, m_{p_{\rm T}}) = \frac{\langle v_n^2 \ v_m(p_{\rm T})^2 \rangle - \langle v_n^2 \rangle \langle v_m(p_{\rm T})^2 \rangle}{\langle v_n^2 \rangle \langle v_m(p_{\rm T})^2 \rangle}$$

 $NSC(n, m_{p_{T}})$

 $NSC(n, m_{p_{T}})$

 $NSC(3,2_{p_{T}})$ and $NSC(4,2_{p_{T}})$ ulletmostly constant with $p_{\rm T}$

 $NSC(n, m_{p_{T}})$

- $NSC(3,2_{p_{T}})$ and $NSC(4,2_{p_{T}})$ • mostly constant with $p_{\rm T}$
- v_4 and v_2 correlated lacksquare

 $NSC(n, m_{p_{T}})$

- $NSC(3,2_{p_{T}}) \text{ and } NSC(4,2_{p_{T}})$ • mostly constant with $p_{\rm T}$
- v_4 and v_2 correlated lacksquare
- v_3 and v_2 anti-correlated

 $NSC(n, m_{p_{T}})$

- $NSC(3,2_{p_{T}}) \text{ and } NSC(4,2_{p_{T}})$ ulletmostly constant with $p_{\rm T}$
- v_4 and v_2 correlated ightarrow
- v_3 and v_2 anti-correlated ightarrow
- Strength of the correlation \bullet not $p_{\rm T}$ -dependent

 $NSC(n, m_{p_T})$

- $NSC(3,2_{p_{T}}) \text{ and } NSC(4,2_{p_{T}})$ ulletmostly constant with $p_{\rm T}$
- v_4 and v_2 correlated ightarrow
- v_3 and v_2 anti-correlated ightarrow
- Strength of the correlation ightarrownot $p_{\rm T}$ -dependent
- Hydro caculations mostly underestimate $NSC(n, m_{p_T})$

Summary

- Precision measurements show $p_{\rm T}$ -dependent V_2 fluctuations
- No indication of V_3 and V_4 fluctuations, if they exist they are within few percent
- Flow angle fluctuations not significant with the available statistics
- Differential study of symmetric cumulants show $p_{\rm T}\text{-independent}~NSC(3,\!2_{p_{\rm T}})$ and $NSC(4,\!2_{p_{\rm T}})$
- These results will further advance our understanding of flow and constrain hydrodynamic models

Thank you for your attention!

$C(\Psi_n^a, \Psi_n^t)$

• Two particles from $p_{\rm T}^a$ and two from $p_{\rm T}^t$

$$C(\Psi_{n}^{a}, \Psi_{n}^{t}) = \frac{\langle \cos n[\varphi_{1}^{a} + \varphi_{2}^{a} - \varphi_{3}^{t} - \varphi_{4}^{t} \rangle}{\langle \cos n[\varphi_{1}^{a} + \varphi_{2}^{t} - \varphi_{3}^{a} - \varphi_{4}^{t} \rangle}$$

= $\frac{\langle v_{n}(p_{T}^{a})^{2} \ v_{n}(p_{T}^{t})^{2} \ \cos 2n[\Psi_{n}(p_{T}^{a}) - \Psi_{n}(p_{T}^{t}) - \psi_{$

Assuming non-flow is the same:

 $C(\Psi_n^a, \Psi_n^t) \approx \langle \cos 2n[\Psi_n(p_T^a) - \Psi_n(p_T^t)] \rangle$

$C(\Psi_n^a, \Psi_n^t)$

• Two particles from $p_{\rm T}^a$ and two from $p_{\rm T}^t$

$$C(\Psi_{n}^{a}, \Psi_{n}^{t}) = \frac{\langle \cos n[\varphi_{1}^{a} + \varphi_{2}^{a} - \varphi_{3}^{t} - \varphi_{4}^{t} \rangle}{\langle \cos n[\varphi_{1}^{a} + \varphi_{2}^{t} - \varphi_{3}^{a} - \varphi_{4}^{t} \rangle}$$

= $\frac{\langle v_{n}(p_{T}^{a})^{2} \ v_{n}(p_{T}^{t})^{2} \ \cos 2n[\Psi_{n}(p_{T}^{a}) - \Psi_{n}(p_{T}^{t})^{2} \rangle}{\langle v_{n}(p_{T}^{a})^{2} \ v_{n}(p_{T}^{t})^{2} \rangle}$

Assuming non-flow is the same:

 $C(\Psi_n^a, \Psi_n^t) \approx \left(\cos 2n [\Psi_n(p_T^a) - \Psi_n(p_T^t)] \right)$

• $C(\Psi_n^a, \Psi_n^t) < 1$ Dec

Decorrelation of flow angle at $p_{\rm T}^a$ and $p_{\rm T}^t$

