

THERMAL PHOTON PRODUCTION IN AU+AU COLLISIONS OBSERVED BY PHENIX

Mitrankov Iurii For PHENIX collaboration

MOTIVATION

Photons are a unique probe for Quark Gluon Plasma (QGP)

- Emitted from all the stages after the collision
- All thermal mediums emit thermal radiation in the form of photons or low mass lepton pairs
- "Color blind" (do not suffer strong interaction), provide a direct fingerprint of its creation point

Direct γ = Inclusive γ

- Hadronic decay γ

Downside:

- Small production rate
- Very large background from hadron decays

PHOTON SOURCES IN HEAVY ION COLLISIONS

Extracting thermal photon requires the systematic uncertainty of decay photons and prompt photons subtractions much less than **10 %**

NEW INSIGHTS

A wealth of datasets available for direct photon analysis in PHENIX

- 16 years of operation, 9 collision species, 9 collision energies
- 3 different analysis methods calorimeter method, virtual γ method, external conversion method

p+p	p+Au	d+Au	³ He+Au	Cu+Cu	Cu+Au		Au+Au	,
200 GeV	200 GeV	200 GeV	200 GeV	200 GeV	200 GeV	200 GeV	62.4 GeV	39 GeV
2015	2015	2016	2014	2005	2012	2014 (16)	2010	2010
2006		2008				2010		
2005		2003				2007		. In
2003						2004		- 111

Photon measurement techniques in PHENIX

Measuring energy deposited by photons in Calorimeter

- Good resolution at high $\ensuremath{p_{\text{T}}}$
- Low \boldsymbol{p}_{T} contaminated by hadrons

Internal photon conversions

- Measure virtual photons
- Reduction in background from hadron decay by a factor of 5
- Low p_{T} reach is limited(~1 GeV) as well as high p_{T}

External conversions

- Measure real photons
- Extends $p_T < 1$ GeV and good resolution
- High p_T reach is limited

Direct photon "puzzle"

Large yield and large anisotropy observed at PHENIX poses a challenge to theoretical models:

> Large yield — Early emission Large v2 \longrightarrow Late emission

> > **Challenging for current** theoretical models to describe large yield and v₂ simultaneously!

PRC94, 064901 (2016)

Direct photon "puzzle"

Large yield and large anisotropy observed at PHENIX poses a challenge to theoretical models:

Large yield \longrightarrow Early emission Large v2 — Late emission

In order to understand this, PHENIX has measure data in:

Large systems:

Au+Au 200, 62, 39 GeV and Cu+Cu at 200 GeV

Small systems:

Direct photon spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

Direct photon spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

Direct photon spectra normalized by $(dN_{ch}/d\eta)^{1.25}$

Integrated low p_T direct photon yield — universal scaling

Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities PRL 123, 022301 (2019)

 Universal scaling behavior in all A+A systems

$$dN_{\gamma}/dy = A \times (dN_{ch}/d\eta)^{\alpha}$$

• Source of photons must be similar

11

Integrated low p_T direct photon yield — universal scaling

Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities PRL 123, 022301 (2019)

 Universal scaling behavior in all A+A systems

$$dN_{\gamma}/dy = A \times (dN_{ch}/d\eta)^{\alpha}$$

- Source of photons must be similar
- N_{coll} x pQCD and N_{coll} x p+p follow same scaling at 0.1 of yield

Integrated low p_T direct photon yield — universal scaling

Integrate the low p_T direct photons and use $dN_{ch}/d\eta$ to compare data from different beam energies, collisions species, and collision centralities

 Universal scaling behavior in all A+A systems

$$dN_{\gamma}/dy = A \times (dN_{ch}/d\eta)^{\alpha}$$

- Source of photons must be similar
- $N_{coll} \ x \ pQCD$ and $N_{coll} \ x \ p+p$ follow same scaling at 0.1 of yield
- Onset of low p_T radiation excess at dN_{ch} /dη ~10?

Comparison with STAR

Discrepancy with STAR Au+Au results

STAR data shows the scaling behavior also

The magnitude is lower comparing to PHENIX results

R_Y via external conversion method

- A new measurement with 2014 Au+Au dataset
- via external conversion method
- 10 fold statistics
- Photons convert in VTX layers.
- Reconstruction conversion position using e^+e^- and the B map, origin of the conversion
- Double ratio tagging method: cancelation of systematics

10/6/2020

New result consistent with previous published results using:

conversion method

New result consistent with previous published results using:

- conversion method,
- virtual γ method

New result consistent with previous published results using:

- conversion method,
- virtual γ method,
- calorimeter method

New result consistent with previous published results using:

- conversion method,
- virtual γ method,
- calorimeter method

4 independent measurements from independent datasets shown here!

Full overlap with the published low p_T and high p_T measurements

Direct photon yield in Au + Au collisions at 200 GeV

Direct photon yield in Au + Au collisions at 200 GeV

 $\gamma^{\text{direct}} = (R_{\gamma} - 1)\gamma^{\text{hadron}}$

At high $p_T Au + Au$ data consistent with N_{coll} scaled p+p result

Enhancement persists below 3 GeV in (semi-)peripheral Au+Au collisions

Direct photon scaling with new 2014 results

Direct photon scaling with new 2014 results

Direct photon scaling with new 2014 results

SUMMARY

PHENIX measured the low pt direct photon yields in Au+Au collisions at 200 GeV for

different centrality bins with 2014 dataset

- Consistent with previous published PHENIX results
- Higher statistical precision, a full overlap with the published low pt and high pt measurements

Theoretical picture still incomplete-unable to describe large yield and v₂ simultaneously

Observed a scaling behavior on direct photons at large systems:

- At the same center of mass energy, low at high pT scale with Ncoll
- At all energies, low pT yield scale with $(dNch/d\eta)^{1.25}$

SUMMARY

PHENIX measured the low pt direct photon yields in Au+Au collisions at 200 GeV for

different centrality bins with 2014 dataset

- Consistent with previous published PHENIX results
- Higher statistical precision, a full overlap with the published low pt and high pt measurements

Theoretical picture still incomplete-unable to describe large yield and v₂ simultaneously

Observed a scaling behavior on direct photons at large systems:

- At the same center of mass energy, low at high pT scale with Ncoll
- At all energies, low pT yield scale with $(dNch/d\eta)^{1.25}$

THANK YOU FOR ATTENTION!