

Modification of hadron production in small and large systems observed by PHENIX

Mariia Mitrankova For PHENIX collaboration

Motivation

• Light flavor hadrons in A+A & p+A \rightarrow properties of the produced medium & reaction dynamics

Motivation

• Light flavor hadrons in A+A & p+A \rightarrow properties of the produced medium & reaction dynamics

• Different hadrons properties \rightarrow observables in the soft sector & high p_T probes & signatures of the onset of collectivity in collisions of small systems (possible QGP formation)

	π^0	η	ω	K *	K _S	φ
Mass, MeV	135	548	782	892	498	1019
Quark content	$uar{u} dar{d}$	$\frac{1}{6}\left(u\bar{u}+d\bar{d}-2s\bar{s}\right)$	$\frac{1}{\sqrt{2}} \left(u \bar{u} + d \bar{d} \right)$	$d\bar{s}$	$\frac{1}{\sqrt{2}} \left(d\bar{s} + s\bar{d} \right)$	ss
Lifetime, fm/c	$2.5 \cdot 10^{7}$	1.6.105	23	4.16	$2.7 \cdot 10^{13}$	46

Motivation

• Light flavor hadrons in A+A & p+A \rightarrow properties of the produced medium & reaction dynamics

• Different hadrons properties \rightarrow observables in the soft sector & high p_T probes & signatures of the onset of collectivity in collisions of small systems (possible QGP formation)

- PHENIX measured
 - $(p + \overline{p})/2, \pi^0, \eta, K^*, K_S, \phi \& \omega$
 - in p+p, p+Al, $p/d/^{3}$ He+Au, Cu+Cu, Cu+Au, Au+Au & U+U:

 \circ Baseline measurements in p+p collisions

 \odot Study of the parton energy loss in heavy ion collisions

 \circ Cold nuclear matter effects

Comparison to theoretical model predictions

- All measured results were found to be consistent between the different decay modes
- Well described by the Tsallis distribution functional form with only two parameters:
 - \circ T = 112.6 ± 3.8 + (11.8 ± 7.0)m₀[GeV/c²] MeV
 - $\circ n = 9.48 \pm 0.14 + (0.66 \pm 0.39)m_0[\text{GeV/c}^2]$ (Phys.Rev.D83:052004)
- These spectra are used as a baseline to compare with more complex and heavy colliding systems such as p+A and A+A
- These spectra are also needed for tuning event generators and parameters of fragmentation functions

$\pi^0, \eta, K_s, K^*, \phi \& \omega$ Reconstruction in p+A & A+A

	System	Decay modes	BR,%	Detector
π ⁰	p+p, d+Au, Cu+Cu, Au+Au, Cu+Au, U+U, p/³He+Au	γγ	~99	EMCal
η	p+p, d+Au, Cu+Cu, Au+Au, Cu+Au, U+U	γγ	~39	EMCal
ω	p+p, d+Au, Cu+Cu, Au+Au, Cu+Au, U+U	$\pi^0\gamma$	~8.4	EMCal
К*	p+p, d+Au, Cu+Cu, Cu+Au, U+U, ³ He+Au	$K^{\pm}\pi^{\pm}$	~67	DC+ToF
Ks	p+p, d+Au, Cu+Cu, Cu+Au	$\pi^0\pi^0$	~30	EMCal
ф	p+p, d+Au, Cu+Cu, Au+Au, Cu+Au, U+U, p/ ³ He+Au	<i>K</i> + <i>K</i> -	~49	DC+ToF

PH*ENIX

Large Systems

suppression values

In most central collisions $(p + \bar{p})/2$ are less suppressed than $\varphi \& K^*$, which are less suppressed than π^0 , and η in the intermediate p_T range

At $p_T > 5$ GeV/c, ϕ , K^* , π^0 , η , K_S , ω show similar

within uncertainties.

Light hadrons integrated R_{AB}

• The ordering is seen at $p_T \gtrsim 2$ GeV/c:

 $\pi^{0} \& \eta \langle R_{AB} \rangle < \varphi \& K^{*} \langle R_{AB} \rangle < (p + \bar{p})/2 \langle R_{AB} \rangle$

POLYTECH

St.Petersburg Polytechnig

• The ordering is seen at $p_T \gtrsim 2 \text{ GeV/c}$:

 $\pi^{0} \& \eta \langle R_{AB} \rangle < \varphi \& K^{*} \langle R_{AB} \rangle < (p + \bar{p})/2 \langle R_{AB} \rangle$

• The φ , π^0 , $\eta \& K_s$ integrated R_{AB} at $p_T > 5$ GeV/c show same suppression level

 10^{-1}

0

100

200

300

N_{part}

Small systems: p+Al, p+Au, d+Au, ³He+Au

$\pi^0 \& \phi R_{AB}$ in p+Au, d+Au, ³He+Au

$\pi^0 \& \phi R_{AB}$ in p+Au, d+Au, ³He+Au

At intermediate p_T range:

Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20%

 π^{0} and $\phi R_{pAu} \approx R_{dAu} \approx R_{HeAu}$ in peripheral collisions

$\pi^0 \& \phi R_{AB}$ in p+Au, d+Au, ³He+Au

At intermediate p_T range:

At high-p_T range:

Ordering $R_{pAu} > R_{dAu} > R_{HeAu}$ in 0-20% π^{0} and $\phi R_{pAu} \approx R_{dAu} \approx R_{HeAu}$ in peripheral collisions

 $\pi^0 R_{AB}$'s consistent with each other at high-p_T

Hint of suppression in central collisions for π^0

Hint of enhancement in peripheral collisions

$\mathbf{\overline{\mu}}_{\text{Petersburg Polytechnic}}^{\text{POLYTECH}} \pi^0 \& \varphi R_{AB} \text{ in } p+Al, p+Au, d+Au, ^3He+Au \text{ phienix}$

In whole ϕp_T range π^0 and ϕ mesons R_{AB} 's are similar in small systems

Might indicate that CNM effects are not responsible for the differences between ϕ and π^0 seen in A+A

Comparisons to other light hadron's R_{AB} PHXENIX in d+Au collisions

In contrast to heavy-ion, φ , π^0 , η , η' , $\omega \& K_s$ exhibit similar shape

Protons R_{AB} show enhancement at moderate p_T as in the most central heavy-ion collisions

R_{AB} in peripheral collisions consistent with each other within uncertainties.

 $\pi^{\pm}\& \overline{p}$ invariant yield in 0-5% are well described by SONIC and superSONIC

FLOW might be responsible for proton enhancement

PH^{*}ENIX

Model independent conclusions for the mechanism for high pT nuclear modification in small systems:

mostly independent
 interaction of each
 projectile

PH^{*}ENIX

Model independent
conclusions for the
mechanism for high pT
nuclear modification in
small systems:

- mostly independent interaction of each projectile
- not driven thickness of matter traversed by projectile

$h^{\pm} \langle \mathbf{R}_{AB} \rangle$ in p+Al and p+Au

arXiv:1906.09928v1

In central collisions

Strong centrality dependence

- Backward rapidity shows large enhancement
- Forward rapidity shows suppression
- Au-going direction consistent with pQCD multiscattering calculation

h^{\pm} in p+Al and p+Au

 $h^{\pm} R_{AB}$ in p-going direction is described by EPPS16+PYTHIA and nCTEQ15+PYTHIA

 $\langle R_{AB} \rangle$ vs. N_{part} in A-going direction is described by pQCD multiscattering calculations

Large Systems:

- Light mesons R_{AB} in large systems for similar N_{part} values exhibit similar shape
 - Production and suppression of the light meson seems to depend on nuclear overlap size, but not on its geometry and not on its density

Hadron's R_{AB} exhibit a three different suppression patterns: $\pi^0 \& \eta \langle R_{AB} \rangle < \varphi \& K^* \langle R_{AB} \rangle < (p + \bar{p})/2 \langle R_{AB} \rangle$

• The observation of these patterns in many collision systems can provide a contribution to the understanding of the strangeness enhancement competing with energy loss

Small systems:

The $\varphi \& \pi^0$ mesons R_{AB}'s are consistent in p/d/³He+Au collisions in all centralities

• That might indicate that cold nuclear effects are not responsible for the differences between $\varphi \& \pi^0$ seen in Au+Au, Cu+Cu, Cu+Au and U+U collisions

In most central collisions in the intermediate p_T range there's an ordering of $R_{pAu} > R_{dAu} > R_{HeAu}$ for both $\phi \& \pi^0$ mesons:

• The ordering might indicate a system size dependence

These results can provide additional constraints for the models that try to explain CNM effects (like AMPT, EPOS)