Machine learning techniques for optimisation of track selection criteria
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In this contribution we performed the analysis based on the Monte
Carlo simulations of inelastic proton-proton interactions within the
NAG6 [ /SHINE experimental facility.! > Momentum vector
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NAG6I/SHINE 1s a fixed target experiment located at the CERN
SPS. It has a complex geometry of tracking detectors resulting In a
non-trivial behaviour of reconstruction efficiency in different
kKinematic acceptances.
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Now we can divide these populations to the original one and construct
two acceptance maps by selecting regions with high efficiency. In order to
improve visual clarity, we project the obtained maps in phi direction.
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Ida = LinearDiscriminantAnalysis(solver="svd", store_covariance=True) — lineardiscr: (area =10:66)
qda = QuadraticDiscriminantAnalysis(store covariance=True) 0.2 1 quadratic discr. (area = 0.75)
ada = AdaBoostClassifier(DecisionTreeClassifier(max_depth=2),algorithm="SAMME.R",n_estimators=200) —— AdaBoost nEst=200, depth=2 (area = 0.80)
nn = MLPClassifier( solver="adam’, learning_rate="adaptive’, hidden_layer_sizes=(100,), alpha=0.0001, f —— NN tuned (area = 0.81)
activation='"relu" ) i X Real cuts used in NA61
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