First observation of diffraction in proton-lead collisions at the LHC with the CMS detector

Dmitry Sosnov

Petersburg Nuclear Physics Institute NRC KI, Gatchina, Russia

for the CMS collaboration

The 5th International Conference on Particle Physics and Astrophysics, Moscow, Russia, October 6, 2020
The talk is based on recent preliminary CMS results:

CMS collaboration,
First measurement of the forward rapidity gap distribution in pPb collisions at
$\sqrt{s_{NN}} = 8.16$ TeV

CMS-PAS-HIN-18-019, CERN, June 2020
Diffractive collisions are defined as special inelastic collisions in which no quantum numbers are exchanged between colliding particles.

A diffractive process is characterized by a Rapidity Gap, which is caused by t-channel pomeron(s) exchange.

Most important problems of QCD which can be studied with diffraction:
- Nature of the pomeron in QCD
- Small-x problem and "saturation" of parton densities

Cross sections of inelastic diffractive processes are very sensitive to nonlinear saturation effects, which get more important for scattering off nuclei.

Diffraction of hadrons on nuclear targets at very high energies is also relevant for cosmic-ray physics.

The latest measurements on diffraction in pA were done by HELIOS with $\sqrt{s} = 27$ GeV Z. Phys. C 49 (1999) 355.
- Rapidity Gap - the rapidity regions free of final state particles
- Forward Rapidity Gap (FRG) distribution is one of the most inclusive way to study diffraction
- Until now only pp diffraction at LHC is observed
- FRG was studied with pp collisions data by ATLAS EPJC 72 (2012) 1926, CMS PRD 92 (2015) 012003

First observation of diffraction in pPb collisions at the LHC with the CMS detector

Dmitry Sosnov, NRC KI — PNPI, Gatchina, Russia

ICPPA-2020, October 6, 2020
Triggers

- Minimum Bias (MB): Requires the presence of proton and lead beams and an energy of HF Tower more than approximately 7 GeV in either of the HF calorimeters.
- Zero Bias (ZB): Requires the presence of proton and lead beams in the CMS detector.
- Analysis made on Minimum Bias and Zero Bias used for the cross section corrections.

HF Towers

- HF has fine segmentation by η and ϕ into 432 HF Towers.

Calorimetry + tracking = Particle Flow (PF) objects

- Silicon tracker: $|\eta| < 2.5$
- ECAL and HCAL: $|\eta| < 3.0$
- Forward Hadron Calorimeter (HF): $3.0 < |\eta| < 5.2$
Data and event topologies

Data: CMS, pPb $\sqrt{s_{NN}} = 8.16$ TeV, 6.4 μb$^{-1}$ (2016)

Event topologies of interest

- **Lead dissociation**
 - The photon flux from the Pb is enhanced by a factor of Z_{Pb}^2 compared to that of protons

- **Proton dissociation**

Compared to MC event generators

- **HIJING v2.1**
 - hard parton scatterings: perturbative QCD
 - soft interactions: string excitations

- **EPOS-LHC**: Gribov-Regge theory for the parton interactions; Gluon saturation — phenomenological implementation

- **QGSJET II-04** (generator level only): Gribov-Regge theory for the parton interactions; Gluon saturation via higher order pomeron-pomeron interactions

The generators do not include photon exchange processes.
Selection of events with Forward Rapidity Gaps (FRG)

Data sample: Minimum Bias data.
Offline selection:
- At least one HF tower with energy at least 10 GeV
- Events with 0 or 1 vertex.

Definition of Rapidity Gap
- At least one HF tower with energy at least 10 GeV in HF opposite to FRG
- In bins of 0.5 η
- For $|\eta| < 2.5$:
 - No track with $p_T > 200$ MeV
 - Total energy of all PF candidates less than 6 GeV
- For $2.5 \leq |\eta| < 3.0$:
 - Total energy of all PF hadronic candidates less than 13.4 GeV

Correction to total inelastic cross section
- Zero Bias data used
- At least one track with $p_T > 200$ MeV
The Monte Carlo spectra are normalized to the total visible cross section of the data.

- For both topologies (pPb and pp), the spectra fall by a factor of over 50 between $\Delta \eta^F = 0$ and $\Delta \eta^F = 2$.
- For $\Delta \eta^F > 2$ the spectra flatten off for both topologies.
- The predictions of EPOS-LHC are closer to the data than those of HIJING.
- For the pp MC predictions are significantly below the data in the region $\Delta \eta^F > 2$ due to γp events.
FRG cross section at detector level for $|\eta| < 3.0$

Contributions of different processes predicted by EPOS-LHC

- Non-diffractive processes dominate at $\Delta\eta^F < 3.0$
- Extending the FRG acceptance would allow to be more sensitive to the diffractive processes

ND: Non-Diffractive
CD: Central Diffractive
SD: Single Diffractive
DD: Double Diffractive

Dmitry Sosnov, NRC KI — PNPI, Gatchina, Russia
ICPPA-2020, October 6, 2020
"Diffraction enhanced" subsample: extending over HF region adjacent to FRG

To extend FRG over the HF region (3.0 < \(|\eta|\) < 5.2):

- Data: weighting the original \(d\sigma/d\Delta\eta_F\) spectra by the probability for the corresponding HF calorimeter to have no signal
- MC: No detectable particles at the HF acceptance

Weighting procedure

- We want to find the fraction of events without energy deposition at HF
- For the low energy part we normalize HF distribution of non-colliding bunch events to the leftmost part at full distribution
- This we do for each FRG bin separately on the ZeroBias data
Unfolding to hadron level

Hadron level

All our corrections correspond to following hadron level definition:

- Inelastic collision events
- FRG in the central region (the same as detector level):
 - In bins of 0.5 η
 - For $|\eta| < 2.5$:
 - No charged particles with $p_T > 200$ MeV
 - The total energy of all particles should not exceed 6 GeV
 - For $2.5 \leq |\eta| < 3.0$:
 - The total energy of neutral hadrons should not exceed 13.4 GeV
- No detectable particles at the HF acceptance on the side of FRG
Hadron-level FRG cross section at diffractive enhanced subsample for $|\eta| < 3.0$

The Monte Carlo spectra are normalized to the total visible cross section of the data.

- For the IPp topology case, (γ-exchange contribution should be negligible), predictions of EPOS-LHC is about a factor of 2 and QGSJET II a factor of 4 are below the data.
- However for both of those generators the shape of the $\frac{d\sigma}{d\Delta\eta^F}$ spectrum is similar to that of the data.
- The rapidity spectrum from the HIJING generator falls at large $\Delta\eta^F$ in contradiction to the data.

- For the IPp case all the generators are more than a factor of 5 below the data.
- This suggests a very strong contribution from γp events which is not yet implemented in the considered event generators.

Those generators do not include photon exchange processes.
Contributions of different processes as predicted by EPOS-LHC and QGSJET II

Stacked distributions:

ND: Non-Diffractive CD: Central Diffractive SD: Single Diffractive DD: Double Diffractive

- Transition to diffractive enhanced sample suppressed contribution of non-diffractive processes.
- The considered event generators do not fully describe the data.

Dmitry Sosnov, NRC KI — PNPI, Gatchina, Russia First observation of diffraction in pPb collisions at the LHC with the CMS detector ICPPA-2020, October 6, 2020
Summary

- Forward rapidity gap distribution \(\frac{d\sigma}{d\Delta \eta^F} \) from proton-lead collisions at the LHC (\(\sqrt{s_{NN}} = 8.16 \text{ TeV} \)) have been measured for the first time for both pomeron-lead and pomeron-proton topologies.
- For the IPp topology case, where the \(\gamma \)-exchange contribution should be negligible:
 - Predictions of EPOS-LHC is about a factor of 2 and QGSJET II a factor of 4 are below the data.
 - However for both of those generators the shape of the \(\frac{d\sigma}{d\Delta \eta^F} \) spectrum is similar to that of the data.
 - The rapidity spectrum from the HIJING generator falls at large \(\Delta \eta^F \) in contradiction to the data.
- For the IPp case:
 - All used generators are more than a factor of 5 below the data.
 - This suggests a very strong contribution from \(\gamma p \) events which is not yet implemented in the considered event generators.
- These data may be of significant help in modeling ultrahigh-energy cosmic ray air showers.
Thank you!
Backup slides
LHC beams and collision modes

LHC beams
- Beam 1 circulates clockwise
- Beam 2 goes counter-clockwise

Collision modes
- During data taking beam direction was reversed.
- Pbp: beam 1 — protons, beam 2 — lead ions
- pPb: beam 1 — lead ions, beam 2 — protons
Comparison of pP and γp events

To test the appropriateness of using these generators for the unfolding, distribution of:
- Number of tracks,
- p_T distribution of tracks
- Sum of energy of all PF candidates

in a bin was studied.

For each $\Delta\eta^F$ bin, the distributions are in a good agreement.