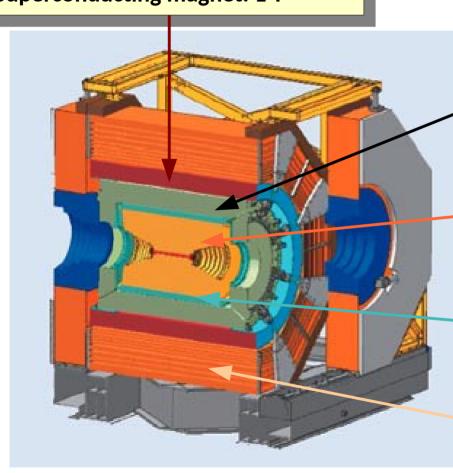

Partial wave analysis of $J/\psi \rightarrow K^+K^-\pi^0$

Igor Denisenko (for the BESIII Collaboration) iden@jinr.ru

ICPPA 2020 5-9 October 2020


BESIII @BEPCII

The BESIII detector

Superconducting magnet: 1 T

NIM A614, 345(2010)

EMC: Csl cristal

- Energy resolution: 2.5% @1GeV
- Spatial resolution: 6mm

MDC:

- Spatial resolution: $\sigma_{xy} = 120 \mu m$
- Momentum resolution:0.5% @ 1GeV
- **dE/dx** resolution: 6%

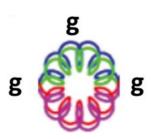
TOF (double/single layer scintillator):

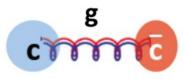
Time resolution: **80ps** (barrel)

110ps [**60ps**] (endcaps)

Muon ID:


9 layers RPC (8 for endcaps) in the fluxreturn yoke


Hadron spectroscopy


Hadron spectroscopy is widely believed to be a key to understand QCD in the strong coupling regime.

It is a testing ground for non-perturbative approaches to QCD like AdS/QCD models or lattice QCD.

Detailed understanding of the hadron spectra is crucial for identification of long predicted exotic particles.

Light hadron spectroscopy @BESIII

Light hadron spectroscopy at BESIII

- Clean e⁺e⁻ environment
- Known quantum numbers of the initial state
- Gluon-rich decays
- Unprecedented statistics (10 billion J/ ψ and 0.5 billion ψ ' decays).
- Clean final states

$J/\psi \rightarrow K^+K^-\pi^0$ and light hadron spectroscopy

$J/\psi \rightarrow K^+K^-\pi^0$

Kaon spectroscopy:

- 13 established states, 12 need confirmation, much more predicted by potential models
- Natural parity states (JP=1-, 2+, 3-,...) with masses up 2.6 GeV/c² are allowed

Meson decaying to K⁺K⁻:

- Isovector states with JPC=1--, 3--,5--, ... are allowed in strong decays (ρ(1450), ρ(1700), ...)
- The same JPCs are allowed for isoscalars in EM decays
- Previously reported exotic X(1575)

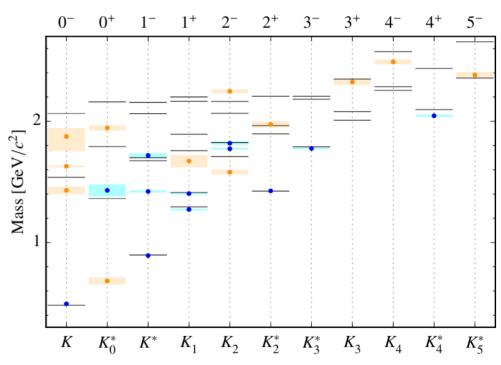
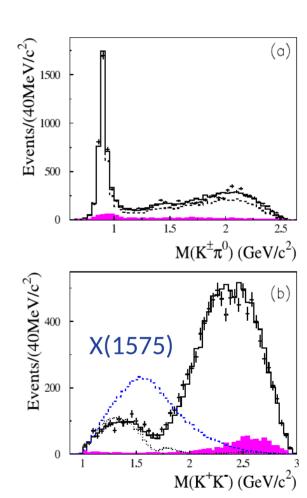


Figure from B. Grube, PKI2018 (arXiv:1804.06528)


X(1575) in $J/\psi \rightarrow K^+K^-\pi^0$

BESII (PRL97, 142002 (2006))

- Analysis of 58M J/ψ decays
- PWA:
 - K*(892)[±]
 - K*(1410)±
 - X(1575) (K⁺K⁻)
 - $\rho(1700)$
 - flat JPC=1-- contribution (PHSP)

X(1575):

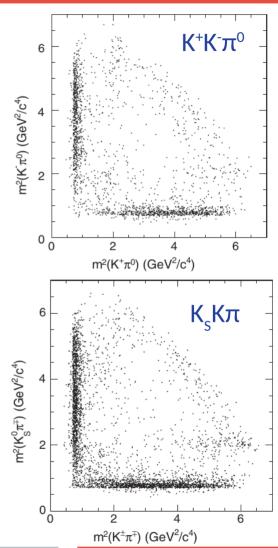
- M ~ 1570 MeV
- Γ~800 MeV
- $B(J/\psi \to X(1575)\pi^0 \to K^+K^-\pi^0)) \sim 8.5 \times 10^{-4}$
- Multiquark and molecular state interpretations were suggested (e.g. PRD74, 097503 (2006), PLB 643 (2006), ...)

BABAR: $J/\psi \rightarrow K^+K^-\pi^0$, $J/\psi \rightarrow K_S^*K\pi$ and $J/\psi \rightarrow \pi^+\pi^-\pi^0$

BABAR (PRD95, 072007 (2017)):

• Channels: $\pi^+\pi^-\pi^0$, $K^+K^-\pi^0$, and $K_sK\pi$

ISR technique


• Statistics: 2102 ($K^+K^-\pi^0$) and 3907 ($K_sK\pi$)

Dalitz-plot analysis

Intermediate state	$b_{K^+K^-\pi^0}$ (%)	$b_{K_SK^{\pm}\pi^{\mp}}$ (%)
$K^*(892)$	$92.4 \pm 1.5 \pm 3.4$	$90.5 \pm 0.9 \pm 3.8$
$K_1^*(1410)$	$2.3 \pm 1.1 \pm 0.7$	$1.5 \pm 0.5 \pm 0.9$
$K_2^*(1430)$	$3.5 \pm 1.3 \pm 0.9$	$7.1 \pm 1.3 \pm 1.2$
$\rho(1450)$	$9.3 \pm 2.0 \pm 0.6$	$6.3 \pm 0.8 \pm 0.6$

• Properties of $\rho(1450)$

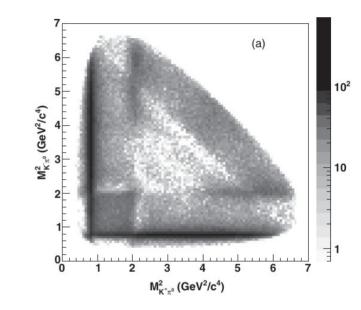
$$B(\rho(1450) \rightarrow K^+K^-)/B(\rho(1450) \rightarrow \pi^+\pi^-) = 0.307 \pm 0.084 \pm 0.082$$

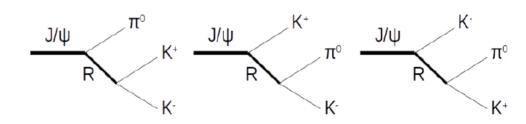
PWA

PRD100,032004(2019)

Data at BESIII:

- ~183 thousands events collected from 223M J/ψ decays
- Background level of 0.3%


Partial wave analysis:


- Unbinned maximum likelihood method
- Isobar parameterization of the decay
- Resonances are parameterized with BW. In case of K*(892)[±] and K*₂(1430)[±]

$$\Gamma(s_m, J_a) = \frac{\rho_J(s_m)}{\rho_J(M_a^2)} \Gamma_a,$$

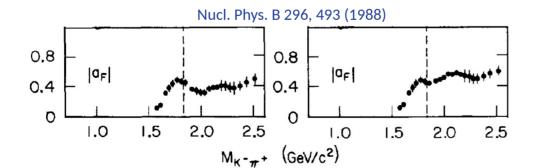
$$\rho_J(s_m) = \frac{2q}{\sqrt{s_m}} \frac{q^{2J}}{F^2(q^2, r, J)}.$$

• Two solution reported: based on wellestablished states only and with a smooth parameterization in the JP=3- $K\pi$ wave

PWA solution I

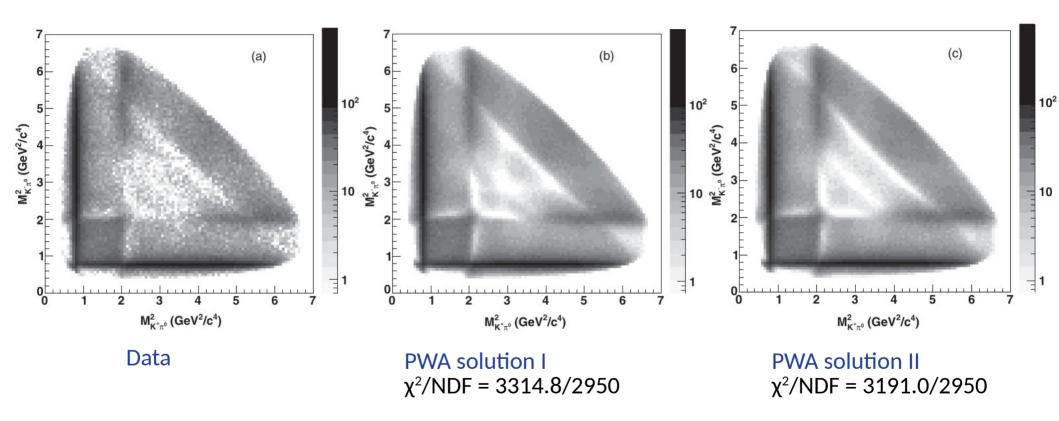
PRD100,032004(2019)

$K^{\pm}\pi^0$ channels						
J^{PC}	PDG	$M({ m MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	b(%)	$b^{+(-)}(\%)$	$\Delta { m NLL}$
1-	$K^*(892)^{\pm}$	894.1 ± 0.1	$46.7 \!\pm\! 0.2$	89.2±0.8	41.0 ± 0.2	_
1-	$K^*(1680)^{\pm}$	1677*	205*	0.59 ± 0.04	0.25 ± 0.02	398
2+	$K_2^*(1430)^{\pm}$	1431.4 ± 0.8	100.3 ± 1.6	9.2 ± 0.1	4.1 ± 0.1	_
2+	$K_2^*(1980)^{\pm}$	1817 ± 11	312 ± 28	$0.44 \!\pm\! 0.05$	0.17 ± 0.02	238
3-	$K_3^*(1780)^{\pm}$	1781*	203*	0.08 ± 0.01	0.04 ± 0.01	83
4+	$K_4^*(2045)^{\pm}$	$2015 \!\pm\! 7$	$183 \!\pm\! 17$	0.16 ± 0.02	0.07 ± 0.01	192
		K^{-}	$+K^-$ channel			
J^{PC}	PDG	$M({ m MeV/c^2})$	$\Gamma({\rm MeV/c^2})$	b('	%)	$\Delta \ln L$
1	$\rho(770)$	771*	150*	1.8=	±0.2	220
1	$\rho(1450)$	1465*	400*	1.2=	±0.2	27
1		1643 ± 3	167 ± 12	1.1:	±0.1	281
1		2078 ± 6	149 ± 21	0.15=	±0.03	73
1	non-resonant			1.2=	±0.2	34
3	$\rho_3(1690)$	1696*	204*	0.14=	±0.01	144

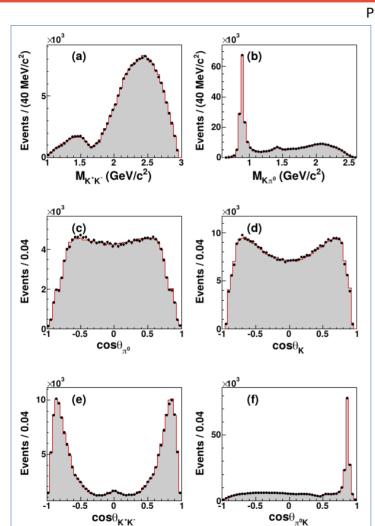

- No established states improve NLL by more than 17
- NLL can be still improved by up to 95 with smooth contributions (the largest in 3⁻ K[±]π⁰ wave)
- Not possible to consistently define systematic errors
- No evidence for X(1575)

PWA solution II

PRD100,032004(2019)

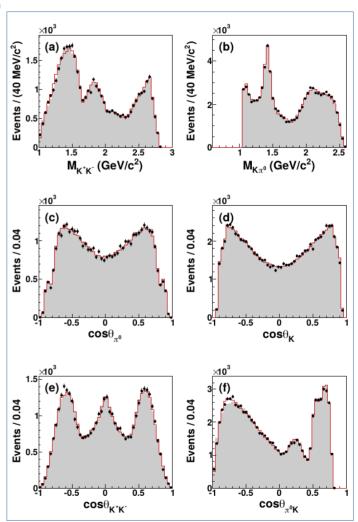

			$K^{\pm}\pi^0$ channels			
J^{PC}	PDG	$M({ m MeV}/c^2)$	$\Gamma({ m MeV}/c^2)$	b(%)	$b^{+(-)}(\%)$	$\Delta { m NLL}$
1-	$K^*(892)^{\pm}$	$893.6 \pm 0.1^{+0.2}_{-0.3}$	$46.7 \pm 0.2^{+0.1}_{-0.2}$	$93.4 \pm 0.4^{+1.8}_{-5.8}$	$42.5 \pm 0.1^{+0.5}_{-1.7}$	_
1-	$K^*(1410)^{\pm}$	1380*	176*	$0.26 \!\pm\! 0.04$	0.11 ± 0.02	80
1-	$K^*(1680)^{\pm}$	1677*	205*	0.20 ± 0.03	0.08 ± 0.01	56
2+	$K_2^*(1430)^{\pm}$	$1432.7 \pm 0.7^{+2.2}_{-2.3}$	$102.5 \pm 1.6^{+3.1}_{-2.8}$	$9.4 \pm 0.1^{+0.8}_{-0.5}$	$4.2 \pm 0.1^{+0.3}_{-0.2}$	_
2+	$K_2^*(1980)^{\pm}$	$1868 \pm 8^{+40}_{-57}$	$272 \pm 24^{+50}_{-15}$	$0.38 \pm 0.04^{+0.22}_{-0.05}$	$0.15 \pm 0.02^{+0.08}_{-0.02}$	192
3-	$K_3^*(1780)^{\pm}$	1781*	203*	$0.16 \!\pm\! 0.02$	$0.07\!\pm\!0.01$	105
4+	$K_4^*(2045)^{\pm}$	$2090 \pm 9^{+11}_{-29}$	$201\!\pm\!19^{+57}_{-17}$	$0.21 \pm 0.02^{+0.10}_{-0.05}$	$0.09\pm0.01^{+0.04}_{-0.02}$	212
3-	non-resonant			$\sim 1.5\%$	$\sim 0.6\%$	629
			K^+K^- channel			
J^{PC}	PDG	$M({ m MeV/c}^2)$	$\Gamma({\rm MeV/c^2})$	b(%)	$\Delta \ln L$
1		$1651\pm3^{+16}_{-6}$	$194\pm 8_{-7}^{+15}$	1.83±0	$.11^{+0.19}_{-0.17}$	796
1		$2039\pm 8_{-18}^{+36}$	$193\pm23^{+25}_{-27}$	0.23±0	$.04^{+0.07}_{-0.06}$	102

- Broad 3⁻ K[±]π⁰ contribution is added
- States contributing to NLL by more than 40 are included
- Systematic errors are determined from the uncertainties of PWA and the detector simulation



Data description I

PRD100,032004(2019)


Data description II

PRD100,032004(2019)

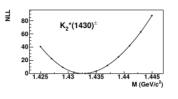
 $M(K^{\pm}\pi^{0}) > 1.05 \text{ GeV/c}^{2}$

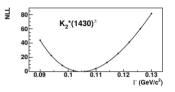
Full data set

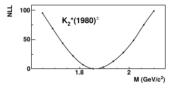
Summary on the decay structure

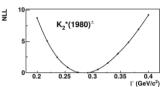
PRD100,032004(2019)

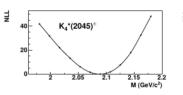
There is a set of states (contributions) reliably identified in both solutions:

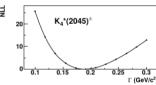

- K*(892)[±]
- K*₂(1430)[±]
- K*₂(1980)[±]
- K*₄(2045)[±]
- 1-- @1650 MeV/c²
- 1-- @2050 MeV/c²

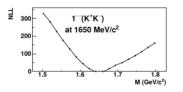

Also

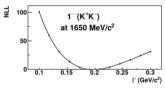

- The are no evidence for X(1575)
- p(1450) can not be reliably identified, but its production rate of the order of 1% does not contradict data

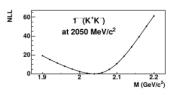

The results of the solution II are considered as final.

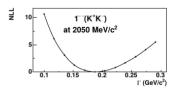

Solution II











$K^*(892)^{\pm}$ and $K^*_{2}(1430)^{\pm}$

The most precise measurements of K*(892)* and K*₂(1430)* parameters

TECN

K*(892)±

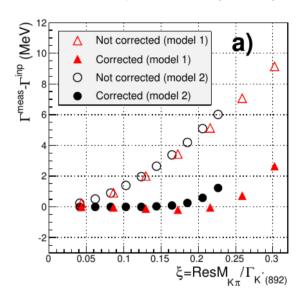
	$M (\mathrm{MeV/c^2})$	$\Gamma \text{ (MeV)}$
τ -decays (PDG aver.)	$895.47 \pm 0.20 \pm 0.74$	$46.2 \pm 0.6 \pm 1.2$
hadroproduction (PDG aver.)	891.66 ± 0.26	50.8 ± 0.9
$J/\psi \to K^+K^-\pi^0 \text{ (sol. II)}$	$893.6 \pm 0.1^{+0.2}_{-0.3}$	$46.7 \pm 0.2^{+0.1}_{-0.2}$

K^{*}₂(1430)[±]

CHARGED ONLY, WITH FINAL STATE $K\pi$

Mass

	VALUE (MeV)	EVTS		DOCUMENT ID		TECN
	$\textbf{1427.3} \pm \textbf{1.5}$	OUR AVERAGE Error includes scale factor of 1.3.				
	$1432.7 \; {\pm}0.7 \; {}^{+2.2}_{-2.3}$	183k		ABLIKIM	2019AQ	BES
Ī	$1420~{\pm}4$	1587		BAUBILLIER	1984B	HBC
	$1436 \pm \! 5.5$	400	1, 2	CLELAND	1982	SPEC
	$1430 \pm \! 3.2$	1500	1, 2	CLELAND	1982	SPEC
	1430 +3 2	1200	1. 2	CLEL AND	1982	SPFC


Width

VALUE (MeV)

$\textbf{100.0} \pm \textbf{2.1}$	OUR FIT			
$\textbf{100.0} \pm \textbf{2.2}$	OUR AVERAGE E	rror includes scale factor	of 1.1.	
$102.5\ \pm 1.6\ ^{+3.1}_{-2.8}$	183k	ABLIKIM	2019AQ	BES
$109\ {\pm}22$	400	1,2 CLELAND	1982	SPEC
$124\ \pm 12.8$	1500	1,2 CLELAND	1982	SPEC
$113\ \pm 12.8$	1200	1,2 CLELAND	1982	SPEC
85 ±16	935	TOAFE	1001	HBC

DOCUMENT ID

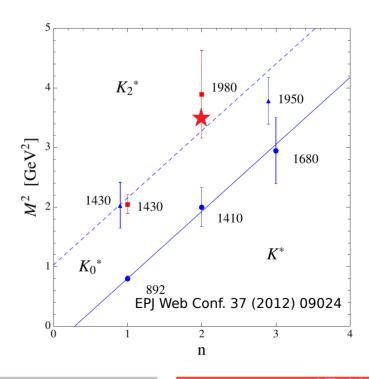
JINST 10, P10028 (2015)

Approximations to calculate the R°σ convolution:

- use of the Taylor expansion for σ ,
- consider cross-section dependence on M²(K⁺π⁰) and M²(K⁻π⁰) only

$K_{2}^{*}(1980)^{\pm}$ and $K_{4}^{*}(2045)^{\pm}$

 $K_{2}^{*}(1980)$ and $K_{4}^{*}(2045)$ are for the first time observed in J/ ψ decays.


K^{*}₂(1980)

K* ₂ (1980)	Approximation II	PDG 2018
Mass (MeV/c²)	1868±8 ₋₅₇ +40	1974±26
Width (MeV)	272±24 ₋₁₅ +50	376±70

Consistent within 2.20

Potential models					
	Mass (MeV/c²)				
n ^{2S+1} L _J	Godfey et al, 1985	Barnes et al, 2002	Ebert et al, 2009	Pang et al, 2017	
2 ³ P ₂	1938	1850	1896	1870	
13F ₂	2151	2050	2093	1964	

Better consistency with Regge trajectories in the (n,M²) plain.

Resonances in the K⁺K⁻ channel

PRD100,032004(2019)

 $\omega(1650)$ MASS

J^{PC}=1⁻⁻ @1650 MeV:

$$M = 1651 \pm 3_{-6}^{+16} MeV/c^2$$

 $\Gamma = 194 \pm 8_{-7}^{+15} MeV/c^2$

Possible interpretations:

- ³D₁ isovector state,
- $\omega(1650)$,
- interference of these states.

J^{PC}=1⁻⁻ @2050 MeV:

$$M = 2039 \pm 8_{-18}^{+36} MeV/c^{2}$$

$$\Gamma = 193 \pm 23_{-27}^{+25} MeV/c^{2}$$

Possible interpretations:

- ρ(2150),
- vector-isovector state observed in pp annihilation (Phys. Lett. B 491, 47 (2000)).

Production of ϕ -resonances is strongly suppressed: B(J/ $\psi \rightarrow \phi \pi^0$) ~ 10⁻⁶ – 10⁻⁷ (Phys. Rev. D91, 112001 (2015)).

VALUE (MeV)	EVTS	DOCUMEN'	T ID	TECN	COMMENT
$\textbf{1670} \pm \textbf{30}$	OUR ESTIMATE				
••• We do not us	se the following data	for averages, fits, lim	its, etc. • • •		
$1651 \pm 3 {}^{+16}_{-6}$	183k	1 ABLIKIM	2019AQ	BES	$J/\psi o K^+K^-\pi^0$
1673_{-7}^{+6}		ACHASOV	2019	SND	$e^+\;e^- o\pi^+\pi^-\pi^0\eta$
$1671 \pm 6 \pm 10$	824	2 AKHMETSH	IIN 2017A	CMD3	$1.4-2.0~e^+~e^- ightarrow\omega\eta$
1660 ± 10	898	3 ACHASOV	2016B	SND	$1.34-2.00~e^+~e^- ightarrow\omega\eta$
1680 ± 10	13.1k	4 AULCHENK	O 2015A	SND	$1.05-1.80~e^+~e^- ightarrow\pi^+\pi^-$
$1667 \pm 13 \pm 6$	h	AUBERT	2007AU	BABR	10.6 e^+ $e^- o \omega \pi^+ \pi^- \gamma$
1645 ± 8	13	AUBERT	2006D	BABR	10.6 e^+ $e^- o \omega \eta \gamma$
$1660 \pm 10 \pm 2$		AUBERT,B	2004N	BABR	10.6 e^+ $e^- o \pi^+\pi^-\pi^0\gamma$
$\omega(1650)$ W	IDTH				INSPIRE
$\omega(1650)$ W VALUE (MeV)	VIDTH EVTS	DOCUMENT	· ID	TECN	COMMENT
			T ID	TECN	
$egin{aligned} & VALUE ext{ (MeV)} \ & 315 \pm 35 \end{aligned}$	EVTS OUR ESTIMATE			TECN	
$egin{aligned} & VALUE ext{ (MeV)} \ & 315 \pm 35 \end{aligned}$	EVTS OUR ESTIMATE				
VALUE (MeV) 315 ± 35 We do not u	EVTS OUR ESTIMATE se the following data	for averages, fits, limit	ts, etc. ••• 2019AQ		COMMENT
VALUE (MeV) 315 ± 35 We do not u 194 ±8 ⁺¹⁵ ₋₇	EVTS OUR ESTIMATE se the following data	for averages, fits, limit	ts, etc. ••• 2019AQ 2019	BES	COMMENT $J/\psi o K^+K^-\pi^0$
VALUE (MeV) 315 ± 35 We do not u 194 ±8 ± 15 7 95 ±11	EVTS OUR ESTIMATE se the following data 183k	for averages, fits, limi 1 ABLIKIM ACHASOV	2019AQ 2019 N 2017A	BES SND	COMMENT $J/\psi \to K^+K^-\pi^0$ $e^+\;e^-\to \pi^+\pi^-\pi^0\eta$
VALUE (MeV) 315 ± 35 We do not u $194 \pm 8 + \frac{115}{7}$ 95 ± 11 $113 \pm 9 \pm 10$	EVTS OUR ESTIMATE se the following data 183k 824	for averages, fits, limi 1 ABLIKIM ACHASOV 2 AKHMETSHI	2019AQ 2019 2019 N 2017A 2016B	BES SND CMD3	COMMENT $J/\psi \rightarrow K^+K^-\pi^0$ $e^+\ e^-\rightarrow \pi^+\pi^-\pi^0\eta$ $1.4-2.0\ e^+\ e^-\rightarrow \omega\eta$
VALUE (MeV) 315 ± 35 ⋅⋅ We do not u $194 \pm 8 ^{+15}_{-7}$ 95 ± 11 $113 \pm 9 \pm 10$ 110 ± 20	EVTS OUR ESTIMATE se the following data 183k 824 898	for averages, fits, limi 1 ABLIKIM ACHASOV 2 AKHMETSHI 3 ACHASOV	2019AQ 2019 N 2017A 2016B	BES SND CMD3 SND	COMMENT $J/\psi \rightarrow K^+K^-\pi^0$ $e^+\ e^-\rightarrow \pi^+\pi^-\pi^0\eta$ $1.4-2.0\ e^+\ e^-\rightarrow \omega\eta$ $1.34-2.00\ e^+\ e^-\rightarrow \omega\eta$
VALUE (MeV) 315 ± 35 We do not u $194 \pm 8 + 15$ 95 ± 11 $113 \pm 9 \pm 10$ 110 ± 20 310 ± 30	EVTS OUR ESTIMATE se the following data 183k 824 898	for averages, fits, limit 1 ABLIKIM ACHASOV 2 AKHMETSHI 3 ACHASOV 4 AULCHENKO	2019AQ 2019 N 2017A 2016B O 2015A 2007AU	BES SND CMD3 SND SND	COMMENT $J/\psi \to K^+K^-\pi^0 \\ e^+ \ e^- \to \pi^+\pi^-\pi^0 \eta \\ 1.4 - 2.0 \ e^+ \ e^- \to \omega \eta \\ 1.34 - 2.00 \ e^+ \ e^- \to \omega \eta \\ 1.05 - 1.80 \ e^+ \ e^- \to \pi^+\pi^-\pi^0$

Branching fractions

PRD100,032004(2019)

$$B(J/\psi \rightarrow K^+K^-\pi^0) = (2.88 \pm 0.01 \pm 0.12) \times 10^{-3}$$

- currently the most precise measurement

Intermediate resonance in the $K\pi$ system						
$R_{K\pi}$	$B(J/\psi \to R_{K\pi}^{\pm} K^{\mp} \to K^{+} K^{-} \pi^{0}) \ B(J/\psi$	$\to R_{K\pi}^+ K^- + c.c. \to K^+ K^- \pi^0)$				
$K^*(892)$	$(1.22\pm0.01^{+0.05}_{-0.07})\times10^{-3}$	$(2.69\pm0.01^{+0.13}_{-0.20})\times10^{-3}$				
$K_2^*(1430)$	$(1.21\pm0.02^{+0.10}_{-0.08})\times10^{-4}$	$(2.69\pm0.04^{+0.25}_{-0.19})\times10^{-4}$				
$K_2^*(1980)$	$(4.3\pm0.5^{+2.3}_{-0.6})\times10^{-6}$	$(1.1\pm0.1^{+0.6}_{-0.1})\times10^{-5}$				
$K_4^*(2045)$	$(2.6 \pm 0.3^{+1.1}_{-0.6}) \times 10^{-6}$	$(6.2\pm0.7^{+2.8}_{-1.4})\times10^{-6}$				
	Intermediate resonance in the K^+K^- system					
R_{KK}	$B(J/\psi \to R_{KK}\pi^0 \to$	$B(J/\psi \to R_{KK}\pi^0 \to K^+K^-\pi^0)$				
$1^{}(1650 \text{ MeV}/c^2)$	$(5.3\pm0.3^{+0.6}_{-0.5})\times10^{-5}$					
$1^{}(2050 \text{ MeV}/c^2)$	$(6.7 \pm 1.1^{+2.2}_{-1.8}) >$	< 10 ⁻⁶				

The systematic uncertainties for K*(892)± production are larger than those reported by BABAR (PRD77,092002 (2008)) due to uncertainties of the PWA solution.

Summary

In the partial wave analysis of $J/\psi \rightarrow K^+K^-\pi^0$

- The structure of the decay is determined and found significantly different from what was previously reported by BESII and BABAR.
- The most precise measurements of K*(892)± and K₂*(1430)± parameters.
- The first observation of $K_2^*(1980)^{\pm}$ and $K_4^*(2045)^{\pm}$ in J/ψ decays. Results for $K_2^*(1980)^{\pm}$ much better agree with linear (n,M2) trajectories with the standard slope.
- Two resonance contributions at 1650 MeV/c² and 2050 MeV/c² are identified, their interpretation is discussed.
- ρ(1450) can not be reliably identified, no evidence are found for X(1575) with the decay rate reported previously.
- B(J/ $\psi \to K^+K^-\pi^0$) is measured with a high precision, branching fractions for decays through reliably identified states are reported.