

Studies of Ξ_c baryons at LHCb ICPPA-2020, Moscow

Aleksei Chubykin $^{\rm 1}$ on behalf of the LHCb Collaboration

¹Petersburg Nuclear Physics Institute, NRC KI

October 7, 2020

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Result

```
\begin{array}{l} \mbox{Branching} \\ \mbox{fraction} \\ \mbox{measurement for} \\ \Xi_c^0 \rightarrow \Lambda_c^+ \pi^- \\ \mbox{intro} \\ \mbox{Fits} \\ \mbox{Uncertainties and result} \end{array}
```

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

Outline

The LHCb detector

2 Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \to p \phi$

JHEP 04 (2019) 084

Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$

Phys. Rev. Lett. 124 (2020) 222001

4 First branching fraction measurement for the suppressed decay $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$

arXiv 2007.12096, submitted to Phys.Rev. D.

Search for CP violation in $\Xi_c^+ \rightarrow p K^- \pi^+$ using model-independent techniques

arXiv 2006.03145, submitted to Eur. Phys. J. C

6 Conclusions

Multiplets of charmed baryons with highlights of baryons contained both c ans s quarks.[1]

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

```
Branching
fraction
measurement for
\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-
Intro
Fits
Uncertainties and result
```

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

The LHCb detector

The LHCb [2] detector is located at LHC in CERN

- a single-arm forward spectrometer
- the design is targeted to physics of b and c quarks
- high precision vertex detector
- unique ability of particle identification
- RUN I (2011-2012) RUN II (2015-2018)
- The integral luminosity corresponds to: 9.1 fb⁻¹

Figure 1.1: The LHCb detector

Figure 1.2: Overall view of the LHC experiments

pseudorapidity:	$2 < \eta < 5$
polar angle:	$10 < \theta < 250 \text{ mrad}$
resolution :	$\Delta p/p = 0.5\%$ (low p)
	$\Delta p/p = 1.0\%$ (200 GeV/c)
ECAL resolution:	1% + 10% / \sqrt{E} [GeV]
trigger efficiency:	90 % for dimuon decays
	30 % for multi-body hadronic
tracking efficiency:	96% for long tracks
Kaon ID:	95% for 5 % $\pi \rightarrow K$ mis-id
Muon ID:	97% for 1-3 % $\pi \to \mu$ mis-id

Table 1: Detector performance

Aleksei Chubykin

Studies of Ξ_c baryons at LHCb

October 7, 2020

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Result

 $\begin{array}{l} \mbox{Branching} \\ \mbox{fraction} \\ \mbox{measurement for} \\ \mbox{$\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$} \\ \mbox{Intro} \\ \mbox{Fits} \\ \mbox{Uncertainties and result} \end{array}$

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p\phi$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p\phi$, JHEP 04 (2019) 084

- The LHCb is perfect tool for investigation of rare and suppressed decays.
- The research uses the pp collision data, integrated luminosity of 2 fb $^{-1}$, $\sqrt{s} = 8$ TeV
- Tree-level decays with both u → s and c → d transitions are known as doubly Cabibbo-suppressed (DCS)
- The CKM matrix elements $|V_{us}| \approx |V_{cd}| \ll |V_{ud}| \approx |V_{cs}|$
- The DCS decay branching fractions are smaller with respect to Cabibbo-favoured (CF) and singly Cabibbo-suppressed (SCS).

The DCS decays can keep important information:

- The role of a non-spectator quark, and in particular Pauli interference
- The lifetime hierarchy of charm baryons. Recent measurement of the Λ⁺_c, Ξ⁺_c and Ξ⁰_c charm baryons lifetimes at LHCb [3]

The SCS $\Xi_c^+ \rightarrow p K^- \pi^+$ is used as a normalization decay channel:

$$R_{p\phi} = \frac{\mathcal{B}(\Xi_c^+ \to p\phi)}{\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)}$$

Figure 2.1: $\Xi_c^+ \rightarrow p\phi$ diagram

Aleksei Chubykin

Studies of E_c baryons at LHCb

October 7, 2020 3/14

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons General Result

 $\begin{array}{l} \mbox{Branching} \\ \mbox{fraction} \\ \mbox{measurement for} \\ \Xi^0_c \rightarrow \Lambda^+_c \, \pi^- \\ \mbox{Intro} \\ \mbox{Fits} \\ \mbox{Uncertainties and result} \end{array}$

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p\phi$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p \phi$, JHEP 04 (2019) 084

Figure 2.2: Left: Fit results for the $\Xi_c^+ \to pK^-K^+$ decay (ϕ region: $M_{K^-K^+} < 1.07 \text{GeV}/c^2$) Right: Background subtracted K^-K^+ mass distribution for the $\Xi_c^+ \to pK^-K^+$ decay

 Extraction of K⁻K⁺ component from M(pK⁻K⁺) mass-spectrum is done using unfolding sPlot-technique [4]

Aleksei Chubykin

Studies of Ξ_c baryons at LHCb

October 7, 2020

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons General Result

```
\begin{array}{l} \mbox{Branching} \\ \mbox{fraction} \\ \mbox{measurement for} \\ \mbox{$\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$} \\ \mbox{Intro} \\ \mbox{Fits} \\ \mbox{Uncertainties and result} \end{array}
```

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p\phi$

Observation of the doubly Cabibbo-suppressed decay $\Xi_c^+ \rightarrow p\phi$, JHEP 04 (2019) 084

Uncertainty studies include following steps:

- Evaluation of the trigger-related uncertainties with the Λ⁺_c samples and MC studies
- Using the alternative calibration sample for PID-correction procedure
- Variation of signal and background models
- Variation of (p_t, y) -binning scheme
- Variation of the interpolation procedure for efficiency maps
- Pseudo-experiments for sPlot technique validation

Source	Uncertainty (%)
Signal fit model	0.5
Background fit model	0.5
<i>sPlot</i> -related uncertainty	1.0
Trigger efficiency	3.0
PID efficiency	2.2
Tracking	1.0
$(p_{\rm T}, y)$ binning	1.3
Size of simulation sample	0.7
Selection requirements	0.8
Total	4.4

Table 2: Systematic uncertainties relative to the central value of the ratio $R_{p\phi}$

The ratio of the branching fractions with respect to the $\Xi_c \rightarrow pK^- \pi^+$ decay is measured to be

 $R_{\rho\phi} = (19.8 \pm 0.7 \pm 0.9 \pm 0.2) \times 10^{-3}$

The third uncertainty here is the knowledge of the $\phi \to K^+ K^-$ branching fraction.

Aleksei Chubykin

Studies of Ξ_c baryons at LHCb

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration ar systematics

New exited Ξ_c^0 baryons General Result

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

Observation of new exited Ξ_c^0 baryons

Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+K^-$, Phys. Rev. Lett. 124 (2020) 222001

With new data collected in RUN II the LHCb is perfect tool for baryon spectroscopy

The Particle Data Group provides information about two excited states of Ξ_c^0 baryon in range of interest:

- The $\Xi_c(2930)^0$ baryon was observed in 2018 by Belle in $B^- \to K^- \Lambda_c^+ \bar{\Lambda}_c^-$ decays [5]
- The $\Xi_c(2970)^0$ is well studied in several decay modes [6] [7]

The LHCb observes three narrow structure in this region: $\Xi_c(2923)^0$, $\Xi_c(2939)^0$ and $\Xi_c(2965)^0$

Figure 3.1: Distributions of the invariant-mass difference $\Delta M = m(\Lambda_c^+ K^-) - m(\Lambda_c^+) - m(K^-)$

Aleksei Chubykin

Studies of Ξ_c baryons at LHCb

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Result

 $\begin{array}{l} \label{eq:basic} {\rm Branching} \\ {\rm fraction} \\ {\rm measurement for} \\ \Xi_c^0 \rightarrow \Lambda_c^+ \, \pi^- \\ {\rm Intro} \\ {\rm Fits} \\ {\rm Uncertainties and result} \end{array}$

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

Observation of new exited Ξ_c^0 baryons

Observation of new Ξ_c^0 baryons decaying to $\Lambda_c^+ K^-$, Phys. Rev. Lett. 124 (2020) 222001

- The lineshapes of entire $\Lambda_c^+ K^-$ are S-wave relativistic Breit-Wigner distr. convolved with resolution
- The lineshapes of partially reconstructed decays $\Xi_c(3055)$ and $\Xi_c(3080)$ was determined by MC
- The experimental mass resolution in ΔM internal varies between 1.7 and 2.2 MeV

This research uses same approach as recent investigation of Ω_c baryon [8]

The sample is the pp collision data, integrated luminosity of 5.6 fb $^{-1}$, $\sqrt{s} = 13$ TeV

Table 3: Summar	y of the	parameters	for the	studied	states

Resonance	Peak of ΔM [MeV]	Mass [MeV]	$\Gamma [MeV]$
$\Xi_c(2923)^0$	$142.91 \pm 0.25 \pm 0.20$	$2923.04 \pm 0.25 \pm 0.20 \pm 0.14$	$7.1\pm0.8\pm1.8$
$\Xi_c(2939)^0$	$158.45 \pm 0.21 \pm 0.17$	$2938.55 \pm 0.21 \pm 0.17 \pm 0.14$	$10.2\pm0.8\pm1.1$
$\Xi_c(2965)^0$	$184.75 \pm 0.26 \pm 0.14$	$2964.88 \pm 0.26 \pm 0.14 \pm 0.14$	$14.1\pm0.9\pm1.3$

- Third uncertainty denotes the uncertainty on the known Λ_c^+ mass
- The $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$ baryons are observed for the first time.
- The state previously observed by Belle might be an overlap of $\Xi_c(2923)^0$ and $\Xi_c(2939)^0$.
- An investigation of additional final states is required to establish whether the $\Xi_c(2965)^0$ and $\Xi_c(2970)^0$ states are different baryons.

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 baryons

General

Result

Branching fraction measurement for $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$ Intro

Fits

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

First branching fraction measurement for the suppressed decay $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$, submitted to Phys. Rev. D

A signal interpreted as a Ξ⁰_c → Λ⁺_c π[−] decay was observed for the first time by Belle in 2014 [9]

Two possible processes:

- Transition $s \to u$ with $W^- \to \bar{u}d$ (SUUD).
- Decay via $cs \rightarrow dc$ weak scattering (WS)

Figure 4.1: Decay diagrams for $\Xi_c^0 \to \pi^- \Lambda_c^+$ (a) The SUUD amplitude, and (b) the WS amplitude

- There is no suitable branching fractions for normalization in the direct measurement approach
- It is possible to determine $\mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+)$ by following ratios and two external values:

$$\begin{split} \mathcal{R}_1 &= \frac{N(\Xi_c^0)}{N(\Lambda_c^+)} = \frac{f_{\Xi_c^0}}{f_{\Lambda_c^+}} \cdot \mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+) \\ \mathcal{R}_2 &= \frac{N(\Xi_c^0)}{N(\Xi_c^+)} = \frac{f_{\Xi_c^0}}{f_{\Xi_c^+}} \cdot \frac{\mathcal{B}(\Lambda_c^+ \to pK^- \pi^+)}{\mathcal{B}(\Xi_c^+ \to pK^- \pi^+)} \cdot \mathcal{B}(\Xi_c^0 \to \pi^- \Lambda_c^+) \end{split}$$

- The $f_{\Xi_c^0}/f_{\Lambda_c^+}$ can be estimated from recent LHCb measurements [10] for production fractions of beauty baryons with help of heavy-quark symmetry(HQS) theory
- The $\mathcal{B}(\Xi_c^+ \to pK^-\pi^+)$ is taken from recent Belle measurement [11]

Aleksei Chubykin Studies of Ξ_c baryons at LHCb October 7, 2020 8/14

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 barvons

General

Result

 $\begin{array}{l} {\rm Branching} \\ {\rm fraction} \\ {\rm measurement for} \\ {\Xi}^0_c \rightarrow {\Lambda}^+_c {\pi}^- \\ {}_{\rm Intro} \end{array}$

Fits

Uncertainties and resul

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

First branching fraction measurement for the suppressed decay $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$, submitted to Phys. Rev. D

Figure 4.2: Reconstructed invariant-mass distribution and signal fit of $M(pK^-\pi^+\pi^-)$

Figure 4.3: Distributions of the mass spectrum $M(pK^-\pi^+)$ Left: Λ_c^+ region, Right: Ξ_c^+ region Aleksei Chubykin Studies of Ξ_c baryons at LHCb October 7, 2020 9/14

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 barvons

General

```
Branching
fraction
measurement for
\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-
Intro
Fits
Uncertainties and result
```

Search for CPV
in
$$\Xi_c^+ \to p K^- \pi^+$$

Conclusions

First branching fraction measurement for the suppressed decay $\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$

First branching fraction measurement for the suppressed decay $\Xi_c^0 \to \Lambda_c^+ \pi^-$, submitted to Phys. Rev. D

- $f_{\Xi_b^-}/f_{\Lambda_b^0}$ from LHCb measurement [10]
- $\blacksquare \ \mathcal{B}(\Xi_c^+ \to pK^-\pi^+) \text{ from Belle [11]}$
- Ghost tracks refer to uncertainties from falsely reconstructed tracks
- PID refers to particle identification efficiencies
- The intermediate decays are uncertainties of the inexact modeling of the resonant structures for the charmed baryons decays.
- The b-decay sources refer to charmed baryons originating from b-baryon decays

Table 4: Systematic uncertainties in the branching fraction measurements.

Source	Estimate (%)		
	$\mathcal{B}(\Xi_c^0)$	$\rightarrow \pi^{-}\Lambda_{c}^{+})$	$B(\Xi_c^+ \rightarrow pK^-\pi^+)$
	\mathcal{B}_1	B_2	\mathcal{B}_3
$f_{\Xi b}^{-}/f_{\Lambda b}^{0}$	32	-	32
$f_{\Xi c}^0/f_{\Lambda c}^+ = C \cdot f_{\Xi b}^-/f_{\Lambda b}^0$	6	-	6
$f_{\Xi c}^{0}/f_{\Xi c}^{+}=1$	-	1	1
$B(\Xi_c^+ \rightarrow pK^-\pi^+)$	-	49	-
$B(\Lambda_c^+ \rightarrow pK^-\pi^+)$	-	5	5
Simulation statistics	4	3	2
Trigger efficiency	7	8	2
Ghost tracks	2	2	0
PID	1	1	1
Tracking efficiencies	2	2	0
Fit yields	6	6	3
Intermediate decays	2	2	2
b-decay sources	2	0	2
Lifetimes	3	3	2
Relative $\int \mathcal{L}$	-	1	1
Sum of external	33	49	33
Sum of intrinsic	12	13	6
Sum of all	35	51	34

First measurement for $\mathcal{B}~(\Xi_c^0\to\pi^-\Lambda_c^+)$ to be $(0.55\pm0.02\pm0.18)\rtimes10^{-2}$

Studies of E_c baryons at LHCb

Observation of $\Xi_c^+ \rightarrow p\phi$ decav.

```
New exited \Xi_a^0
barvons
```

```
Branching
fraction
measurement for
\Xi_c^0 \to \Lambda_c^+ \pi^-
```

Search for CPV $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

<u>Search for CP</u> violation in $\Xi_c^+ \rightarrow p K^- \pi^+$ using model-independent techniques

Search for CP violation in $\Xi_c^+ \rightarrow p K^- \pi^+$ using model-independent techniques, submitted to EPJC

- Observation of CP violation in charm meson D^0 decays was done by LHCb in 2019 [12]
- The research uses the pp collision data , integrated luminosity of 5.6 fb $^{-1}$, with $\sqrt{s} = 7$ and 8 TeV
- Analysis was done by both binned and unbinned methods in the Dalitz plot

(a) Dalitz plot for $\Lambda_c^+ \to pK^-\pi^+$ (b) Dalitz plot for $\Xi_c^+ \to pK^-\pi^+$

- Binned method is based on comparison between the Dalitz plots using χ^2 test
- Under the hypothesis of CPV, difference between bins should show deviation from normal distribution
- Unbinned method is based on a concept of a k-nearest neighbours
- The obtained results are consistent with the absence of CP violation in $\Xi_c^+ \to p K^- \pi^+$ decays Aleksei Chubvkin Studies of E_c baryons at LHCb October 7, 2020 11/14


```
Observation of \Xi_c^+ \rightarrow p\phi decay.
```

Diagram.

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 barvons

General Besult

```
\begin{array}{l} \mbox{Branching} \\ \mbox{fraction} \\ \mbox{measurement for} \\ \Xi^0_c \rightarrow \Lambda^+_c \pi^- \\ \mbox{Intro} \\ \mbox{Fits} \\ \mbox{Uncertainties and result} \end{array}
```

```
Search for CPV in \Xi_c^+ \rightarrow p K^- \pi^+
```

Conclusions

Conclusions

- The LHCb detector is perfect and stable tool for precise measurements in charm physics sector
 - We expect more interesting results from LHCb soon

Thank You

Observation of $\Xi_c^+ \rightarrow p\phi$ decay.

Diagram

Spectra and fit.

Efficiencies calibration and systematics

New exited Ξ_c^0 barvons

General

Result

```
\begin{array}{l} \mbox{Branching} \\ \mbox{fraction} \\ \mbox{measurement for} \\ \mbox{$\Xi_c^0 \rightarrow \Lambda_c^+ \pi^-$} \\ \mbox{Intro} \\ \mbox{Fits} \\ \mbox{Uncertainties and result} \end{array}
```

Search for CPV in $\Xi_c^+ \rightarrow p K^- \pi^+$

Conclusions

References I

- V Crede and W Roberts. Progress towards understanding baryon resonances. Reports on Progress in Physics, 76(7):076301, jun 2013.
- [2] Alves et al. The LHCb Detector at the LHC. JINST, 3(LHCb-DP-2008-001). CERN-LHCb-DP-2008-001):S08005, 2008. Also published by CERN Geneva in 2010.
- [3] Roel Aaij et al. Precision measurement of the Λ⁺_c, Ξ⁺_c and Ξ⁰_c baryon lifetimes. *Phys. Rev.*, D100(3):032001, 2019.
- [4] Muriel Pivk and Francois R Le Diberder. sPlot: a statistical tool to unfold data distributions. Nucl. Instrum. Methods Phys. Res., A, 555(physics/0402083. LAL-2004-07):356–369. 20 p, Feb 2004.
- [5] Y. B. Li, C. P. Shen, I. Adachi, J. K. Ahn, H. Aihara, S. Al Said, D. M. Asner, T. Aushev, R. Ayad, V. Babu, and et al. Observation of $\xi_c (2930)^0$ and updated measurement of $b^- \rightarrow k^- \lambda_c^+ \bar{\Lambda}_c^-$ at belle. The European Physical Journal C, 78(3), Mar 2018.
- [6] B. Aubert, M. Bona, D. Boutigny, Y. Karyotakis, J. P. Lees, V. Poireau, X. Prudent, V. Tisserand, A. Zghiche, J. Garra Tico, and et al. Study of excited charm-strange baryons with evidence for new baryons \(\xi_c(3055)^+\) and \(\xi_c(3123)^+\). Physical Review D, 77(1), Jan 2008.
- [7] Belle Collaboration, J. Yelton, et al. Study of excited ξ_c states decaying into ξ_c^0 and ξ_c^+ baryons, 2016.
- [8] Roel Aaij et al. Observation of five new narrow Ω_c^0 states decaying to $\Xi_c^+ K^-$. Phys. Rev. Lett., 118(18):182001, 2017.
- [9] S.-H. Lee, B. R. Ko, et al. Measurements of the masses and widths of the $\Sigma_c(2455)^{0/++}$ and $\Sigma_c(2520)^{0/++}$ baryons. *Phys. Rev. D*, 89:091102, May 2014.
- [10] Roel Aaij et al. Measurement of the mass and production rate of Ξ_b^- baryons. Phys. Rev., D99(5):052006, 2019.
- [11] Y. B. Li, C. P. Shen, et al. First measurements of absolute branching fractions of the \(\mathbb{Z}_c^+\) baryon at belle. *Phys. Rev. D*, 100:031101, Aug 2019.
- [12] R. Aaij, C. Abellán Beteta, et al. Observation of cp violation in charm decays. Phys. Rev. Lett., 122:211803, May 2019.

Aleksei Chubykin Studies of Ξ_c baryons at LHCb October 7, 2020 14/14