Recent CMS Results on Exotic Hadron States

Ivan Lilienberg on behalf of the CMS collaboration

7 October 2020

1 X(3872) production (arxiv:2005.04764, accepted by PRL) **a** First observation of $B_s^0 \rightarrow X(3872)\phi$ **b** measurement of

$$R = \frac{\mathcal{B}(B_s^0 \to X(3872)\phi) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B_s^0 \to \psi(2S)\phi) \times \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)}$$

2 Υ(1S)μ⁺μ⁻ production (PLB 808 (2020) 135578)
 measurement of Υ(1S)Υ(1S) cross section at |y_μ| < 2.0
 determination of double-parton scattering contribution
 search for exotic states in Υ(1S)μ⁺μ⁻ invariant mass distribution

- Observed by Belle collaboration in 2003 in B^+ decays to $J/\psi\pi^+\pi^-$
- Mass coincides with $D^{*0}D^0$ threshold,

$$\Gamma_{BW}=1.39\pm0.24\pm0.10$$
 MeV

•
$$J^{PC} = 1^{++}$$

- Decays to open charm dominantly
- Branching fractions to J/\u03c6\u03c6 \u03c6 and J/\u03c6 \u03c6 comparable, isospin violation

Many theoretical models proposed, none of them explains completely all properties of X(3872)

Observation of $B^0_{\varsigma} \to X(3872)\phi$ Decay reconstruction and statistics

•
$$\sqrt{s} = 13 \text{ TeV}$$

- integrated luminosity
 140 fb⁻¹
- 2016-2018 years

Normalization channel: $B_s^0 \rightarrow \psi(2S)\phi$

Observation of $B_s^0 \to X(3872)\phi$ Event selection

- 2μ forming J/ψ and matching trigger requirements
- 4 high-purity tracks, kaon $p_T > 2.2$ GeV (major) and > 1.5 GeV (minor), pion $p_T > 0.7$ GeV
- vertex fit with J/ψ mass constraint, >7% probability
- cosine of 2D B_s^0 pointing angle to primary vertex > 0.999
- B_s^0 2D detach significance > 15σ

$$p_{T}(B_{s}^{0}) > 10 \text{ GeV}$$

$$\pi/K \text{ mass assignment:}$$

$$m_{J/\psi\pi^{+}\pi^{-}} \text{ in } [3.60..3.95] \text{ GeV}$$

$$m_{K^{+}K^{-}} \text{ in } [1.00..1.04] \text{ GeV}$$

$$m_{J/\psi\pi^{+}\pi^{-}K^{+}K^{-}} \text{ in } [5.32..5.42] \text{ GeV}$$

$$p_{FV} p_{FV} p_{FV}$$

 $m_{\pi^+\pi^-} > 0.45$ GeV for $\psi(2S)$ decay, > 0.7 GeV for X(3872) decay

Observation of $B_s^0 \rightarrow X(3872)\phi$ $B_s^0 \rightarrow \psi(2S)\phi$ normalization channel

2D maximun-likelihood fit

• $\psi(2S)$ sig: double Gaussian with common mean

•
$$\psi(2S)$$
 bg: $(y - y_0)^{\beta} \cdot Pol_1(y), y_0 = m_{J/\psi} + 0.45$

• ϕ sig: Breit-Wigner convolved with double Gaussian

•
$$\phi$$
 bg: $(x - x_0)^{lpha} \cdot \operatorname{Pol}_1(x), x_0 = 2m_K$

2D maximun-likelihood fit The same fit model as for $\psi(2S)$, ratio of widths of $J/\psi\pi^+\pi^-$ Gaussians fixed from $\psi(2S)$, scaling parameter is free

- $m_{J/\psi\pi^+\pi^-K^+K^-} m_{J/\psi\pi^+\pi^-} + m_X$ studied: improve resolution, remove correlation between $m_{J/\psi\pi^+\pi^-K^+K^-}$ and $m_{J/\psi\pi^+\pi^-}$
- sPlot from $m_{J/\psi\pi^+\pi^-}:m_{K^+K^-}$ 2D invariant mass distribution
- double Gaussian (signal) + exponential function (background)

Source	Uncertainty (%)
$m(K^+K^-)$ signal model	< 0.1
$m(K^+K^-)$ background model	2.5
$m(J/\psi \pi^+\pi^-)$ signal model	5.3
$m(J/\psi \pi^+\pi^-)$ background model	4.3
Non- B_s^0 background	1.2
Simulated sample size	2.2
Total	7.7

_

$$\begin{split} R &= \frac{\mathcal{B}(B^0_s \to X(3872)\phi) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B^0_s \to \psi(2S)\phi) \times \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = \frac{N_X}{N_\psi} \times \frac{\varepsilon_\psi}{\varepsilon_X} \\ R &= (2.21 \pm 0.29(\text{stat.}) \pm 0.17(\text{syst.}))\% \\ \frac{\mathcal{B}(B^0_s \to X(3872)\phi)}{\mathcal{B}(B^+ \to X(3872)K^+)} = 0.482 \pm 0.063(\text{stat.}) \pm 0.037(\text{syst.}) \pm 0.070(\text{Br}), \\ \text{about twice lower than for } \psi(2S) \end{split}$$

Indicats X(3872) is not a pure charmonium state

Motivation:

 Search for new exotic states (e.g. bbbb tetraquarks) (performed by LHCb, now mass and acceptance area is extended)

Statistics: Run II data 2016 (35.9 fb^{-1})

Selection criteria established using simulation for different hypotheses for resonances

- 4µ separated from each other, |y| < 2.0, at least three matching with trigger objects
- $\mu^+\mu^-$ mass consistent with $\Upsilon(1S)$, the other pair inconsistent with J/ψ
- vertex fit probability > 0.5%

$\Upsilon(1S)\mu^+\mu^-$ production Search for new exotic states

$$\tilde{m_{4\mu}} = m_{4\mu} - m_{\mu^+\mu^-} + m_{\Upsilon(1S)}$$

Example of signal with 1σ significance

$\Upsilon(1S)\mu^+\mu^-$ production Upper limits on cross section

 2.4σ local statistical significance at 25.1 GeV for scalar resonance

• First observation of $B^0_s o X(3872)\phi$

Measurement of branching ratio

$$\frac{\mathcal{B}(B_s^0 \to X(3872)\phi) \times \mathcal{B}(X(3872) \to J/\psi\pi^+\pi^-)}{\mathcal{B}(B_s^0 \to \psi(2S)\phi) \times \mathcal{B}(\psi(2S) \to J/\psi\pi^+\pi^-)} = (2.21 \pm 0.29 \pm 0.17)\%$$

 \blacksquare No new signals in $\Upsilon(1S)\mu^+\mu^-$ state are observed

Backup slides $\Upsilon(1S)\Upsilon(1S)$ production cross section

 $N_{sig} = 111 \pm 16,$ $\sigma = 79 \pm 11 \pm 6 \pm 3$ pb.

Uncertainty source	Uncertainty (%)	Impact on $\sigma_{\rm fid}$ (pb)
Integrated luminosity	2.5	2.0
Muon identification	2.0	1.6
Trigger	6.0	4.7
Vertex probability	1.0	0.8
$\mathcal{B}(Y(1S) \to \mu^+ \mu^-)$	4.0	3.2
Signal and background models	1.2	1.0
Method closure	1.5	1.2
Total	8.1	6.4

CMS

Double-parton scattering fraction $f = (39 \pm 14)\%$