Search for rare decays of the observed Higgs boson and additional Higgs bosons with the ATLAS detector

Yuya Kano on behalf of the ATLAS Collaboration

The 5th international conference on particle physics and astrophysics

6 Oct. 2020

Introduction

- Searches for unobserved processes in the Higgs sector provide important probes for new physics
 - Search for rare decays of SM Higgs boson
 - Search for additional Higgs boson
- New results obtained in 2020 are presented (Using full ATLAS Run 2 dataset corresponding to 139 fb⁻¹)
 - Search for dimuon decay of SM Higgs <u>arXiv:2007.07830</u>
 - Search for Zγ decay of SM Higgs <u>Phys. Lett. B 809 (2020) 135754</u>
 - Search for diphoton resonances <u>ATLAS-CONF-2020-037</u>

Search for $H \rightarrow \mu\mu$ arXiv:2007.07830

- Measuring the Higgs Yukawa-coupling to the muon
 - Unique opportunity among the 2nd-generation fermions at the LHC
- Additionally, new physics can modify the branching ratio

$H \rightarrow \mu\mu$: Analysis strategy

• Select two isolated muons with opposite charge

 Up to one FSR photon is added to m_{μμ} calculation
 (Improves mass resolution by 3%)

- Events are categorized into 20 orthogonal categories
- Signal is extracted by simultaneous fit to $m_{\mu\mu}$ distribution of all categories

$H \rightarrow \mu \mu$: Categorization

- Categorization targets different production modes of the Higgs boson
- Signal and background are separated based on:
 - Number of jets
 - Number of b-tagged jets

q

• Number of additional leptons (e, μ)

W/Z

VBF

BDTs trained for each production mode

q'

0000000

ggF

$H \rightarrow \mu\mu$: Signal and background modelling

Signal:

- Double-sided Crystal Ball function
- Parameters obtained from MC simulations

Background:

- Strategy: "Core" × "Empirical"
 - Core: LO DY line-shape convoluted with detector resolution (Gaussian)
 - Empirical: Describes distortions due to e.g. selections and minor backgrounds

Function	Expression	
PowerN EpolyN	$m_{\mu\mu}^{(a_0+a_1m_{\mu\mu}+a_2m_{\mu\mu}^2++a_Nm_{\mu\mu}^N)} \exp(a_1m_{\mu\mu}+a_2m_{\mu\mu}^2++a_Nm_{\mu\mu}^N)$	

 Validation is performed using fast-simulation DY samples with high statistical precision (for ggF/VBF categories)

$H \rightarrow \mu\mu$: Results

+0.58

+0.13

-0.08

+0.07

-0.03

+0.10

- Observed significance: 2.0σ
 (Expected: 1.7σ)
- Signal strength: $\mu = 1.2 \pm 0.6$ Uncertainties:
 - Statistics
 - Signal theory systematics
 - Experimental systematics
 - Background modelling
- Observed limit: $\mu < 2.2$ at 95% CL (Expected $\mu < 2.0$ assuming SM)
- × 2.5 sensitivity improvement compared to previous publication using 36 fb⁻¹ (~25% due to analysis improvement)

Search for $H \rightarrow Z\gamma$ Phys. Lett. B 809 (2020) 135754

- $BR(H \rightarrow Z\gamma) = 1.54 \times 10^{-4}$ for SM
- Sensitive to new physics contributing to the loop diagrams (e.g. new charged particles)
- Search is performed in the $ee\gamma$ and $\mu\mu\gamma$ final states
 - Corresponding to BR~7% of Z
 - Good mass resolution, low background

$H \rightarrow Z\gamma$: Analysis strategy

- Select opposite-sign lepton pair (*ee* or μμ) and photon
- Introduce six categories based on BDT and kinematics

- Signal:
 - Double-sided Crystal Ball function
- Background:
 - Analytic function with free parameters
 - Validation performed by fit to "templates"
 - *Z*γ template: MC samples
 - Z+jets template: derived from data control region (reversed photon ID)

$H \rightarrow Z\gamma$: Results

Category	μ	Significance
VBF-enriched	$0.5^{+1.9}_{-1.7}\ (1.0^{+2.0}_{-1.6})$	0.3 (0.6)
High relative $p_{\rm T}$	$1.6^{+1.7}_{-1.6} \ (1.0^{+1.7}_{-1.6})$	1.0 (0.6)
High $p_{\mathrm{T}t} \ ee$	$4.7^{+3.0}_{-2.7}(1.0^{+2.7}_{-2.6})$	1.7 (0.4)
Low $p_{\mathrm{T}t} \ ee$	$3.9^{+2.8}_{-2.7} \ (1.0^{+2.7}_{-2.6})$	1.5 (0.4)
High $p_{\mathrm{T}t} \ \mu\mu$	$2.9^{+3.0}_{-2.8}\ (1.0^{+2.8}_{-2.7})$	1.0 (0.4)
Low $p_{\mathrm{T}t} \ \mu\mu$	$0.8^{+2.6}_{-2.6}\ (1.0^{+2.6}_{-2.5})$	0.3 (0.4)
Combined	$2.0_{-0.9}^{+1.0} (1.0_{-0.9}^{+0.9})$	2.2 (1.2)

- Signal strength: $\mu = 2.0 \pm 0.9 \text{ (stat)} ^{+0.4}_{-0.3} \text{ (syst)}$
 - Uncertainty is statistically dominated
 - Largest source of systematic uncertainty: background modelling
- Observed limit: $\mu < 3.6$ at 95% CL (Expected $\mu < 2.6$ assuming SM)
- \times 2.4 sensitivity improvement compared to previous publication using 36 fb⁻¹ (~20% due to analysis improvement)

Search for diphoton resonance ATLAS-CONF-2020-037

- Search for new resonance in $m_{\gamma\gamma} > 160 \text{ GeV}$
 - Spin-0 resonance from e.g. extended Higgs sector
 - Assume width of up to $\Gamma_X/m_X < 10\%$
 - Spin-2 resonance from e.g. RS graviton

11/14

 For spin-0, limits are evaluated for fiducial cross-sections to be model independent

Diphoton resonance: Analysis strategy

- Select two isolated photon candidates
- Signal: Double-sided Crystal Ball function
 (convoluted with relativistic Breit-Wigner for large width)
- Background: Analytic function with free parameters
- Validation performed by fit to "templates"
 - $\gamma\gamma$ template: MC samples

To suppress the impact of statistical fluctuation's on the validation, smoothing is applied using the functional decomposition method

γ+jets template: derived from data control region (reversed photon ID)

$$f(x; b, a_0, a_1) = N(1 - x^{\frac{1}{3}})^b x^{a_0 + a_1 \log(x)}$$

Diphoton resonance: Results

- No significant excess is observed
- Largest deviation: 3.29σ locally at $m_X = 684$ GeV (corresponding to 1.3σ globally)
- Spin-0 resonance limits: Right figure (for narrow-width assumption)
- Spin-2 resonance limits:
 - Similar results as spin-0
 - RS1 model excluded for $m_{G^*} < 4.5 \text{ TeV}$ for $k/\overline{M}_{PI} = 0.1$

Summary

- Searches in the Higgs sector provide probes for new physics
- New results using the full ATLAS Run 2 dataset are presented
 - Search for $H \rightarrow \mu\mu$: $\mu = 1.2 \pm 0.6$ and 2.0σ significance
 - Search for $H \rightarrow Z\gamma$: $\mu = 2.0^{+1.0}_{-0.9}$ and 2.2σ significance
 - Search for diphoton resonance:
 - No significant excess is observed
 - Limits are placed down to 0.03 fb for m = 3 TeV
- These results improved w.r.t. past results thanks to increase in dataset, and improvements in analysis techniques

 $\sim 2\sigma$ sensitivity for rare processes with $BR \sim 10^{-4}$

Backup

$H \rightarrow \mu\mu$: ttH/VH categories

ttH category:

- At least one additional lepton (μ or e) and one b-jet
- BDT discriminant based on 12 variables (e.g. jet multiplicity, $p_{\rm T}^{\mu\mu}$)

VH category:

- At least one additional lepton (μ or e) and no b-jet
- 3-lepton region (targeting W → lv): Two categories based on BDT
- 4-lepton region (targeting Z → ll):
 One category based on BDT

- No additional muon, no b-jets
- Based on jet multiplicities (0, 1, or ≥2), different BDTs are used based on different variables
 - Four categories are defined for VBF
 - Four categories are defined for each jet multiplicity of ggF