

Studies of excited states of beauty hadrons at CMS

Kirill Ivanov¹ (on behalf of the CMS Collaboration)

kirill.ivanov@cern.ch

¹ Moscow Institute of Physics and Technology (MIPT)

ICPPA-2020: 5th International Conference on Particle Physics and Astrophysics Online, Internet

7th October 2020

Introduction and overview

- The CMS Experiment
- Observation of two excited B_c^+ states and measurement of the $B_c^+(2S)$ mass in pp collisions at $\sqrt{s} = 13$ TeV
- Study of excited Λ_b^0 states decaying to $\Lambda_b^0 \pi^+ \pi^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV
- Conclusion and summary

The CMS Experiment

- The CMS Experiment at the LHC was designed mainly for high- p_T physics (Higgs, top-quark, SM precision measurement, New Physics searches etc)
- However, robust muon system, good p_T resolution and perfect vertex reconstruction provide promising opportunities for heavy flavour and quarkonia-related analyses
- In the present talk, two recent results from the CMS Collaboration about excited beauty hadrons studies are reported

Observation of two excited B_c^+ states and measurement of the $B_c^+(2S)$ mass in *pp* collisions at $\sqrt{s} = 13$ TeV

CMS-BPH-18-007, Phys. Rev. Lett. 122 (2019) 132001

About B_c spectroscopy

- B_c^+ meson ($c\bar{b}$ quarks) is the lightest double heavy hadron
 - The study of its properties and search for its excited states are very interesting for theories of strong interactions
- Excited B_c states are expected to decay predominantly via cascades of photon emissions, hard to reconstruct
- However, reconstruction of strong decays of 2S states via two pions is accessible at the LHC
- $B_c^+(2S)$ is expected to decay directly to $B_c^+\pi^+\pi^-$
- $B_c^{*+}(2S)$ will decay to $B_c^{*+}\pi^+\pi^-$ with the following $B_c^{*+} \to B_c^+\gamma$, where very soft photon will be lost
- If $\Delta M \equiv [M(B_c^{*+}) M(B_c^{+})] [M(B_c^{*+}(2S) M(B_c^{+}(2S))]$ is larger than detector resolution, the $B_c^{*+}(2S)$ is expected to be observed lower the $B_c^{+}(2S)$ state in $B_c^{+}\pi^{+}\pi^{-}$ invariant mass spectrum

Previous results

- In 2014 ATLAS Collaboration presented singlepeak observation in $B_c^+\pi^+\pi^-$ invariant mass The mass of this new state is consistent with $B_c^+(2S)$ predictions
- Later LHCb Collaboration with much larger B_c^+ statistics released a paper with no significant $B_c^+(2S)$ signal found
- Both results are based on Run-1 LHC statistics

The $B_c^+ \rightarrow J/\psi \pi^+$ signal at CMS Run-2

- UML fit, Signal is double Gaussian with common mean, background:
 - 1st order polynomial for comb. bkg.
 - ARGUS \otimes Gaussian resolution for partially reconstructed $B_c^+ \rightarrow J/\psi \pi^+ X$ decays below 6.2 GeV
 - The latter one corresponds to $B_c^+ \rightarrow J/\psi K^+$ reflection, normalisation fixed to $B_c^+ \rightarrow J/\psi \pi^+$ Br. fr., shape obtained in simulation

 $m_{B_c^+} = 6271.1 \pm 0.5 \text{ MeV}$

 $\sigma_{eff} = 33.5 \pm 2.5 \text{ MeV}$

6.7

- Two well-resolved peaks are observed in $B_c^+\pi^+\pi^-$ invariant mass, position is consistent with ATLAS single peak
- UML fit: signals are Gaussians, bkg: 3rd order polynomial for comb.bkg. and signal shapes with fixed from Br.fr. normalisation for B⁺_c → J/ψK⁺ contributions

10

- The $\Delta M = 29.1 \pm 1.5 \text{ (stat)} \pm 0.7 \text{ (syst) MeV}$, the resolutions are about 6 MeV \longrightarrow the lower-mass peak is $B_c^{*+}(2S)$ with photon from $B_c^{*+} \rightarrow B_c^+ \gamma$ decay is lost, true $M(B_c^{*+}(2S))$ is unknown
- The higher-mass peak is $B_c^+(2S)$ state with $M(B_c^+(2S)) = 6871.0 \pm 1.2 \text{ (stat)} \pm 0.8 \text{ (syst)} \pm 0.8 \text{ (B}_c^+)$

is used to cancel the B_c^+ signal resolution

Recently, CMS reported the measurement of $B_c^+(2S)$ and $B_c^{*+}(2S)$ cross section ratios, see backup

6.9

 $M(B_{c}^{+} \pi^{+}\pi^{-}) - M(B_{c}^{+}) + m_{B_{c}^{+}}$ (GeV)

6.8

122 (2019) 132001

7.1

7.0

Study of excited Λ_b^0 states decaying to $\Lambda_b^0 \pi^+ \pi^$ in proton-proton collisions at $\sqrt{s} = 13$ TeV

CMS-BPH-19-003, Phys. Lett. B 803 (2020) 135345

Historical $\Lambda_b \pi^+ \pi^-$ overview

 $M_{\Lambda_b^{*0}(5912)} = 5911.97 \pm 0.12 \pm 0.02 \pm 0.66 \text{ MeV}/c^2,$ $M_{\Lambda_b^{*0}(5920)} = 5919.77 \pm 0.08 \pm 0.02 \pm 0.66 \text{ MeV}/c^2,$

Candidates per 1.5 MeV/c²

 Study of excited beauty baryons is very interesting to understand strong interquark interaction and baryons formation mechanisms

- There are many theoretical predictions for the excited Λ_b^0 baryons, but their predicted masses are in a wide range, no particular mass windows where to search
- First excited beauty baryons $\Lambda_b(5912)^0$ and $\Lambda_b(5920)^0$ were observed by LHCb Collaboration in 2012 in $\Lambda_b\pi^+\pi^-$ invariant mass
- In 2013 CDF Collaboration confirmed only the heavier $\Lambda_b(5920)^0$ state

PRD 88, 071101 (2013)

- In 2019 LHCb Collaboration presented the observation of two new very close excited Λ_b^0 states in $\Lambda_b \pi^+ \pi^-$ higher-mass region: $\Lambda_b (6146)^0$ and $\Lambda_b (6152)^0$
- Full Run-1 + Run-2 statistics, more than 1.1M Λ_b^0 ground state candidates
- Some theoretical predictions and intermediate Σ_b and Σ_b^* decays are consistent with the possible doublet of $\Lambda_b(1D)^0$ states

CMS $\Lambda_b \pi^+ \pi^-$ near-threshold study

- Early 2020 CMS Collaboration presented Run-2 $\Lambda_b \pi^+ \pi^-$ analysis, 140 fb^{-1} with $\sqrt{s} = 13$ TeV
- $\Lambda_b \to J/\psi \Lambda$ and $\Lambda_b \to \psi(2S)\Lambda$ channels are used, $\approx 46 \text{k} \Lambda_b^0$ ground state candidates
- Two peaks are observed near the $\Lambda_b \pi^+ \pi^-$ mass threshold: first confirmation of $\Lambda_b (5912)^0$ state and 2nd for $\Lambda_b (5920)^0$ state
- UML fit: 2 double-Gaussians with a common mean for signals (shape fixed from MC) + threshold function $(x x_0)^{\alpha}$ for the comb. bkg.

- The $\Lambda_b \pi^+ \pi^-$ higher-mass region up to 6.4 GeV is studied as well
- A structure near 6.15 GeV is observed, consistent with the overlap of Λ_b(6146)⁰ and Λ_b(6152)⁰ states observed by LHCb Experiment
- A broad enhancement in 6040-6100 MeV region is observed as well, unlike in the same-sign distribution
- UML fit: 2 Breit-Wigner \otimes double Gaussian resolution (fixed from MC), Γ fixed to LHCb results, for 6.15 GeV structure + Breit-Wigner \otimes double Gaussian resolution (fixed from MC), for the broad enhancement + $(x x_0)^{\alpha} \cdot \text{Pol}_1(x)$ function for the comb. bkg.

Additional studies of broad excess

PLB 803 (2020) 135345

PLB 803 (2020) 135345

PDG:

Mass $m(\Sigma_b^+) = 5810.56 \pm 0.25$ MeV Mass $m(\Sigma_b^-) = 5815.64 \pm 0.27$ MeV

Mass $m({\Sigma}_{b}^{*+}) = 5830.32 \pm 0.27$ MeV Mass $m({\Sigma}_{b}^{*-}) = 5834.74 \pm 0.30$ MeV

- Additional studies of the broad enhancement were carried out
- 2D-plot for $M(\Lambda_b^0\pi^+\pi^-)$ versus $M(\Lambda_b^0\pi^{+(-)})$ indicate possible correlation
- The broad excess may be may be related with the presence of intermediate $\Sigma_b^{(*)\pm}\pi^\mp \to \Lambda_b^0\pi^\pm\pi^\mp$ decays
- If $\Sigma_b^{(*)}$ in $M(\Lambda_b^0\pi^{+(-)})$ is vetoed, the broad enhancement disappears, but its true origin cannot be discerned with the present data

Confirmation of CMS results

Kirill Ivanov, ICPPA-2020 Studies of excited states

Studies of excited states of beauty hadrons at CMS

Conclusion and summary

• CMS Experiment is contributing actively to for the excited heavy hadrons spectroscopy:

- Two new well-resolved $B_c^+(2S)$ and $B_c^{*+}(2S)$ mesons were observed for the first time in $B_c^+\pi^+\pi^-$ invariant mass spectrum, consistent with previous ATLAS result of a single peak, later confirmed by LHCb
- Recently, CMS also reported the measurement of $B_c^+(2S)$ and $B_c^{*+}(2S)$ cross section ratios

- $\Lambda_b(5912)^0$ and $\Lambda_b(5920)^0$ states near $M(\Lambda_b^0\pi^+\pi^-)$ threshold are confirmed, their masses are measured and reported
- A 6.15 GeV structure is observed at $M(\Lambda_b^0 \pi^+ \pi^-)$, consistent with the overlap of $\Lambda_b(6146)^0$ and $\Lambda_b(6152)^0$ states; their masses are measured and reported
- A broad enhancement in the 6040-6100 MeV of $M(\Lambda_b^0 \pi^+ \pi^-)$ region is reported (4 std. dev. \longrightarrow first evidence), later confirmed by LHCb as possible Λ_b^{**0} baryon state

• Stay tuned for new beautiful and charming CMS results from the CMS Collaboration to be reported soon!

Thank you for your attention!

Do you have any questions?

Kirill Ivanov, ICPPA-2020 Studies of excited states of beauty hadrons at CMS

Backup slides

Kirill Ivanov, ICPPA-2020 Studies of excited states of beauty hadrons at CMS

• Recently, the CMS Collaboration presented new results of measurement of $B_c^+(2S)$ and $B_c^{*+}(2S)$ cross section ratios (CMS-BPH-19-001, accepted by PRD), based on discussed B_c^+ and $B_c^{(*)+}(2S)$ Run-2 signals

• The $B_c(2S)^+$ to B_c^+ , $B_c^*(2S)^+$ to B_c^+ , and $B_c^*(2S)^+$ to $B_c(2S)^+$ cross section ratios are measured to be:

$$R^{+} \equiv \frac{\sigma\left(B_{c}(2S)^{+}\right)}{\sigma\left(B_{c}^{+}\right)} \mathscr{B}\left(B_{c}(2S)^{+} \to B_{c}^{+}\pi^{+}\pi^{-}\right) = \frac{N\left(B_{c}(2S)^{+}\right)}{N\left(B_{c}^{+}\right)} \frac{\epsilon\left(B_{c}^{+}\right)}{\epsilon\left(B_{c}(2S)^{+}\right)} = (3.47 \pm 0.63 \pm 0.33) \,\%$$

$$R^{*+} \equiv \frac{\sigma\left(B_{c}^{*}(2S)^{+}\right)}{\sigma\left(B_{c}^{+}\right)} \mathscr{B}\left(B_{c}^{*}(2S)^{+} \to B_{c}^{*+}\pi^{+}\pi^{-}\right) = \frac{N\left(B_{c}^{*}(2S)^{+}\right)}{N\left(B_{c}^{+}\right)} \frac{\epsilon\left(B_{c}^{+}\right)}{\epsilon\left(B_{c}^{*}(2S)^{+}\right)} = (4.69 \pm 0.71 \pm 0.56) \,\%$$

$$R^{*+}/R^{+} = \frac{\sigma\left(B_{c}^{*}(2S)^{+}\right)}{\sigma\left(B_{c}(2S)^{+}\right)} \frac{\mathscr{B}\left(B_{c}^{*}(2S)^{+} \to B_{c}^{*+}\pi^{+}\pi^{-}\right)}{\mathscr{B}\left(B_{c}(2S)^{+} \to B_{c}^{*+}\pi^{+}\pi^{-}\right)} = \frac{N\left(B_{c}^{*}(2S)^{+}\right)}{N\left(B_{c}(2S)^{+}\right)} \frac{\epsilon\left(B_{c}(2S)^{+}\right)}{\epsilon\left(B_{c}^{*}(2S)^{+}\right)} = 1.35 \pm 0.32 \pm 0.09$$

- No significant dependence the p_T or |y| of the B_c^+ meson is observed
- The normalised dipion invariant mass distributions from the $B_c^{(*)}(2S)^+ \rightarrow B_c^{(*)+}\pi^+\pi^-$ are reported

Different approaches for exited B-hadrons mass calculation

- We can extract "raw" 4-momenta from prompt PV's tracks or make exited *B*-hadron vertex fit and extract 4-momenta from fit for signal enhancement (used in $B_c^+\pi^+\pi^-$ PRL 122 (2019) 132001 analysis)
- New approach for exited *B*-hadrons study is applied for the $\Lambda_b^0 \pi^+ \pi^-$ <u>PLB 803 (2020) 135345</u> analysis:
- We fit ALL the tracks forming the PV + *B*-candidate (about 20-100 tracks in each) and use 4-momenta from this vertex fit. The PV refitting procedure has improved the $\Lambda_b^0 \pi^+ \pi^-$ mass resolution by up to 50%

Kirill Ivanov, ICPPA-2020 Studies of excited states of beauty hadrons at CMS