Searches for new phenomena in final states involving leptons and jets using the ATLAS detector

A. Gorišek, JSI, Ljubljana
on behalf of the ATLAS collaboration

Jožef Stefan Institute, Ljubljana, Slovenia
Investigated Topology

★ Reconstructed final states with both **leptons** and **jets** — probes for a wide variety of new physics predictions
 - Leptoquarks
 - See-saw mechanism
 - Lepton flavour violation
 - SUSY
 - Vector like quarks
 - Dark matter
 - …

★ In this talk I will concentrate on recently updated searches that cover full Run 2 dataset
 - Production of pairs of Scalar **Leptoquarks** (LQ)
 - **Lepton Flavour Violation** (LFV) in \(Z \rightarrow \ell \tau \)
 - **Type III See-saw** Heavy Leptons

(13TeV, 139 fb\(^{-1}\))
Leptoquarks (LQ)

★ Hypothetical particles that couple to leptons and quarks
 ★ Motivated by the symmetry in lepton and quark spectra
★ Predicted by many GUT models
★ Experimental motivation
 ★ Flavour anomalies in B decays
 ★ Anomalous magnetic moment of muon

★ Search of LQs in ATLAS
 ★ Focus on scalar LQ pair production
 ★ Different final states, including cross-generation

★ Will focus on searches extended to Run 2 dataset (139 fb⁻¹)
 ★ $LQ \rightarrow e/\mu + qq$ [arXiv:2006.05872]
 ★ $LQ \rightarrow \tau + t$ [ATLAS-CONF-2020-029]
 ★ $LQ \rightarrow e/\mu + t$ [ATLAS-CONF-2020-033]
Event selection:

- 2 oppositely charged, same-flavour leptons, ≥ 2 jets (light jets, c and b jets), low E_T^{miss}
- All 6 LQ hypotheses (same and cross gen.) are tested independently — **no excess** observed
- LQ excluded up to $1.8 \ (1.7)$ TeV in **electron (muon)** channel for $\text{Br}(LQ \rightarrow lq) = 1$

ICCPA 2020

Searches with Leptons and Jets @ ATLAS
$LQ \rightarrow \tau + t$

- Pair production $LQ_3^d LQ_3^d \rightarrow t\bar{t}\tau\tau$
- Events categorised based on number of light leptons and τ decaying hadronically to cover the complex multi-lepton final states
 - NN-based technique for τ_{had} identification
- Simultaneous fit to 7 SRs and 15 CRs
- $t\bar{t}$ kinematic reweighing derived by binning in N_{jet} and $m_{eff} = \sum_{e,\mu,\tau, jet} p_T + E_{miss}$
- Data-driven correction in the modelling of fake τ_{had}
- Data-driven normalisation of fake l and ttW BGs
No sig. excess observed after profile-likelihood fit to m_{eff}

LQ masses excluded @ 95% CL up to $1.4 \text{ TeV} / 1.2 \text{ TeV}$ for $Br(LQ \rightarrow t\tau) = 1/0.5$
Cross-generation LQ decay

- Targeting high mass region, where both top quarks are **boosted**
 - Resulting in **large R (1.0) jets**

- Event selection
 - 2 oppositely charged, same-flavour leptons
 - \[m(\ell\ell) > 120 \text{ GeV} \] (to reduce BG from SM production)

- Dominant background \(Z + \text{jets} \) and \(t\bar{t} \)

- XGBoost framework: BDT classifier used to distinguish signal from \(Z + \text{jets} \) and \(t\bar{t} \) background

- Simultaneous fit to 3 bins of BDT shape in SR and two CRs (for \(t\bar{t} \) and \(Z + \text{jets} \) backgrounds)
$LQ \rightarrow e/\mu + t$

- Data compatible with SM / no significant excess observed
- Lower limit on LQ masses @ 95% CL:
 - ★ 1.48 TeV / 1.47 TeV for electron / muon
Lepton flavour violation ($Z \rightarrow \ell \tau$)

★ From **neutrino mixing** — prediction: $\text{Br}(Z \rightarrow \ell \tau) \leq O(10^{-54})$

★ see e.g. arXiv:hep-ph/0001273

★ Analysis focuses on **hadronic** τ decays
 ★ Typically **one** or **three** charged tracks (1-prong, 3-prong)

★ Selection criteria:
 ★ At least **one hadronic** τ candidate and
 exactly **one light lepton** (e or μ) of opposite charge
 ★ $m_T(\tau_{\text{had-vis}}, E_T^{\text{miss}}) < 35 \text{ GeV}$
 to reject $Z \rightarrow \tau\tau$ and $W + jets$
 ★ $m_{\text{vis}}(\ell, \tau_{\text{had-vis}}) > 60 \text{ GeV}$
 to reject lepton pairs incompatible with $Z \rightarrow \tau\ell$
 ★ NN-based τ identification
Signal events — $Z \rightarrow \ell \tau$, main background events $Z \rightarrow \tau \tau$ and $W \rightarrow \ell \nu$ jet

Event topologies of signal and two main BGs show that the angular relations of the decay products is different between the three processes.

Consequently, transverse mass using μ vs τ candidate is a good discriminating distribution.
LFV ($Z \rightarrow \ell \tau$) — upper limit on Br

★ Main backgrounds:

★ **q or g-initiated jets** are misidentified as $\tau_{had-vis}$ ($W(\rightarrow l\nu)+$jets, QCD multijet, $Z+$jets, $t\bar{t}$)

★ Estimated using the data-driven fake factor method

★ $Z \rightarrow \tau\tau$

★ MC with data driven p_T-based corrections, derived in regions with negligible signal

★ Best-fit performed on NN score for $e\tau$ and $\mu\tau$

★ Constraints supersede the so-far most stringent limits by LEP experiments

<table>
<thead>
<tr>
<th>Experiment, polarisation assumption</th>
<th>Observed (expected) upper limit on $B(Z \rightarrow \ell\tau)$ [$\times 10^{-6}$]</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATLAS Run 2, unpolarised τ</td>
<td>8.1 (8.1)</td>
</tr>
<tr>
<td>ATLAS Run 2, left-handed τ</td>
<td>8.2 (8.6)</td>
</tr>
<tr>
<td>ATLAS Run 2, right-handed τ</td>
<td>7.8 (7.6)</td>
</tr>
<tr>
<td>ATLAS Run 2, left-handed τ</td>
<td>9.9 (6.3)</td>
</tr>
<tr>
<td>ATLAS Run 2, left-handed τ</td>
<td>9.5 (6.7)</td>
</tr>
<tr>
<td>ATLAS Run 2, right-handed τ</td>
<td>10 (5.8)</td>
</tr>
</tbody>
</table>
Type III Seesaw

- SM neutrinos are only **left-handed** — thus no standard mass term
- Neutrino oscillations observed → at least two neutrinos have \(m \neq 0 \)
- With **Seesaw mechanism** relative small neutrino mass can be explained by introducing new heavy right handed “neutrinos” (neutrino like particles)

- We focus on **Type III Seesaw** where a new fermion triplet is introduced \((N^0, L^+, L^-)\)
 - \(N^0 \rightarrow \nu h / \nu Z / \ell^\pm W^\mp \)
 - \(L^\pm \rightarrow \ell^\pm h / \ell^\pm Z / \nu W^\pm \)

- Search for pair production:
 - \(pp \rightarrow N^0 L^\pm \)
 - \(pp \rightarrow L^\pm L^\mp \)
Type III Seesaw — analysis

★ ATLAS analysis focuses on the following signature:

★ **2 lepton** final state:
 ★ opposite **sign** (OS) or same **sign** (SS)
 ★ same **flavour** ($ee, \mu\mu$) or opposite **flavour** ($e\mu$)

★ **2 jets** from quark hadronisation

★ Large **missing energy** (E_T^{miss}) due to neutrinos

★ Events split into 3 sets of 6 regions:
 ★ 6x signal (SR), 6x control (CR) and 6x validation (VR)

★ Backgrounds:

★ **Prompt leptons** (based on detailed MC)
 ★ $t\bar{t}$ pairs, diboson production

★ **Non-prompt or “fake” leptons** (data driven methods)
 ★ conversions, jets, semileptonic c/b, charge misID,…

Type III Seesaw — number of events

- Comparison of number of observed (data) and expected events in
- Background control and validation and signal regions

![Graph showing event comparison in control, validation, and signal regions.]
Type III Seesaw — limit

Lower limits on masses of Type III Seesaw heavy leptons at the 95 % CL

Heavy leptons are excluded below masses of 790 GeV using only final states with two light leptons.

H_T — scalar sum of the transverse momenta of selected leptons and jets

Cut-based analysis
expected limit: 820^{+40}_{-60} GeV
observed limit: 790 GeV
Summary

★ Many different processes have signature with two leptons and jets in the final state

★ The presentation focuses on recently published results from ATLAS Experiment on the full data set of Run 2 (2015-2018, 13TeV, 139 fb$^{-1}$)

★ Leptoquarks
 ★ $LQ \rightarrow e/\mu + qq$ (c, b jets) — excluded up to 1.8 (1.7) TeV in electron (muon)
 ★ $LQ \rightarrow \tau + t$ — excluded up to 1.4 TeV
 ★ $LQ \rightarrow e/\mu + t$ — excluded up to 1.48 TeV / 1.47 TeV for electron / muon

★ Lepton Flavour Violation
 ★ $Br(Z \rightarrow e\tau) \leq 8.1 \times 10^{-6}$
 ★ $Br(Z \rightarrow \mu\tau) \leq 9.5 \times 10^{-6}$

★ Type III Seesaw
 ★ Heavy leptons (N^0, L^+, L^-) are excluded below masses of 790 GeV
Type III Seesaw — analysis

★ ATLAS analysis focuses on the following signature:
 ★ **2 lepton** final state:
 ★ opposite **sign** (OS) or same **sign** (SS)
 ★ same **flavour** ($ee, \mu\mu$) or opposite **flavour** ($e\mu$)
 ★ **2 jets** from quark hadronisation
 ★ Large **missing energy** (E_T^{miss}) due to neutrinos

★ Events split into 3 sets of 6 regions:
 ★ 6x signal (SR), 6x control (CR) and 6x validation (VR)

★ Two different approaches:
 ★ **Cut-based** — presented here
 ★ Multivariate ML approach in preparation
Many different sources of background fit in two categories wrt to origin of reconstructed lepton

- **Prompt leptons** — estimated based on detailed MC (MadGraph/Sherpa/Pythia + Geant4)
 - Main sources: top quark pairs, diboson production (WW, WZ, ZZ)

- **Non-prompt or “fake” leptons** (data driven methods)
 - Photon conversions
 - Semileptonic decays of c/b
 - Jets
 - Punch trough particles
 - Charge misID