

5th International Conference on Particle Physics and Astrophysics "Moscow", 5–9 October 2020

Searches for new phenomena in final states involving leptons and jets using the ATLAS detector

<u>A. Gorišek</u>, JSI, Ljubljana on behalf of the **ATLAS collaboration**

Investigated Topology

★ In this talk I will concentrate on recently updated searches that cover full Run 2 dataset

★ Production of pairs of Scalar Leptoquarks (LQ)

(13TeV, 139 fb⁻¹)

- **★ Lepton Flavour Violation** (LFV) in $Z \rightarrow \ell \tau$
- **Type III See-saw** Heavy Leptons

Leptoquarks (LQ)

 $LQ \rightarrow e/\mu + qq$

Accepted by JHEP

★ Event selection:

 $\star 2$ oppositely charged, same-flavour leptons, ≥ 2 jets (light jets, c and b jets) , low E_T^{miss}

★ All 6 LQ hypotheses (same and cross gen.) are tested independently — **no excess** observed ★ LQ excluded up to **1.8 (1.7) TeV** in **electron (muon)** channel for $Br(LQ \rightarrow lq) = 1$

ICCPA 2020

$p \rightarrow \tau + t$

 \star Events cathegorised based on number of light leptons and τ decaying hadronically to cover the complex multi-lepton final states \star NN-based technique for τ_{had} identification

★ Simultaneous fit to 7 SRs and 15 CRs

 $\star t \bar{t}$ kinematic reweighing derived by binning in N_{iet} and

$$n_{eff} = \sum_{e,\mu,\tau,jet} p_T + E_T^{miss}$$

 \star data-driven correction in the modelling of fake τ_{had}

ICCPA 2020

★ No sig. excess observed after profile-likelihood fit to m_{eff} ★ LQ masses excluded @ 95% CL up to **1.4 TeV / 1.2 TeV** for $Br(LQ \rightarrow t\tau) = 1/0.5$

 $LQ \rightarrow e/\mu + t$

R=1.0

top

top

- ★ Cross-generation LQ decay
- ★ Targeting high mass region, where both top quarks are **boosted**
 - ★ Resulting in large R (1.0) jets
- ★ Event selection

backgrounds)

- $\star 2$ oppositely charged, same-flavour leptons
- $\star \geq 2$ large R jets (top)
- ★ $m(\ell \ell) > 120 \text{ GeV}$ (to reduce BG from SM production)
- ★ Dominant background Z + jets and $t\bar{t}$
- ★ XGBoost framework: BDT classifier used to distinguish signal from Z + jets and $t\bar{t}$ background
- \star Simultaneous fit to 3 bins of BDT shape in SR and two CRs (for $t\bar{t}$ and Z + jets

ATLAS Preliminary ATLAS Preliminary Data 10⁴ 10⁴ √s = 13 TeV. 139 fb^{-*} √s = 13 TeV. 139 fb⁻¹ T tŤ Z+jets $LQLQ \rightarrow t_{had} \mu t_{had} \mu$ Z+iets $LQLQ \rightarrow t_{had} et_{had} e$ Others Post-Fit m_{LO}=1.5 TeV BDT Post-Fit m_{LO}=1.5 TeV BDT Uncertainty Uncertainty - LQ 1.5 TeV --- LO 1.5 TeV 10^{2} 10² 10 10 Data/Bkg. 1 Data/Bkg. 0.75 Data/Bkg 1.25 0.75 0.5 SR: high BDT ti CR SR: low BDT SR: mid BDT ti CR

 $LQ \rightarrow e/\mu + t$

JS

8

★ Data compatible with SM / no significant excess observed
 ★ Lower limit on LQ masses @ 95% CL:

*** 1.48 TeV / 1.47 TeV** for **electron / muon**

Lepton flavour violation ($Z \rightarrow \ell \tau$)

★ see e.g. <u>arXiv:hep-ph/0001273</u>

- \bigstar Analysis focuses on **hadronic** τ decays
 - ★ Typically one or three charged tracks (1-prong, 3-prong)

\star Selection criteria:

★ At least one hadronic τ candidate and exactly one light lepton (*e* or μ) of opposite charge

★
$$m_T(\tau_{had-vis}, E_T^{miss}) < 35 \ GeV$$

to **reject** $Z \rightarrow \tau \tau$ and $W + jets$

- ★ $m_{vis}(\ell, \tau_{had-vis}) > 60 \ GeV$ to reject lepton pairs incompatible with $Z \to \tau \ell$
- \star NN-based au identification

LFV — topology

- ★ Event topologies of signal and two main BGs show that the angular relations of the decay products is different between the three processes.
- \star Consequently, transverse mass using μ vs au candidate is a good discriminating distribution

Searches with Leptons and Jets @ ATLAS

JS

10

LFV ($Z \rightarrow \ell' \tau$) — upper limit on Br

jet→τ_{had-vis} fakes

Total uncertainty

ഹ

ATLAS-CONF-2020-03

 $--- Z \rightarrow e\tau (B = 5 \times 10^{-4})$

Data

Ζ→ττ

Others

Z→II

★ Main backgrounds:

★ q or g-initiated jets are misidentified as $\tau_{had-vis}$ (W(→ Iv)+jets, QCD multijet, Z+jets, $t\bar{t}$)

★ Estimated using the data-driven fake factor method

 $\star Z \to \tau \tau$

 \star MC with data driven p_{T} -based corrections, derived in regions with negligible signal

 \star Best-fit performed on NN score for e au and μau

★ Constraints supersede the so-far most stringent limits by LEP experiments

	Observed (expected) upper limit on $\mathcal{B}(Z \to \ell \tau)$ [×10 ⁻⁶]	
Experiment, polarisation assumption	e au	μau
ATLAS Run 2, unpolarised τ	8.1 (8.1)	9.9 (6.3)
ATLAS Run 2, left-handed τ	8.2 (8.6)	9.5 (6.7)
ATLAS Run 2, right-handed $ au$	7.8 (7.6)	10 (5.8)

ICCPA 2020

Searches with Leptons and Jets @ ATLAS

11 **IJ**S

Type III Seesaw

- ★ SM neutrinos are only left-handed thus no standard mass term
- **\star Neutrino oscillations** observed \rightarrow at least two neutrinos have $m \neq 0$
- * With Seesaw mechanism relative small neutrino mass can be explained by introducing new heavy right handed "neutrinos" (neutrino like particles)

* We focus on **Type III Seesaw** where a new fermion triplet is introduced (N^0, L^+, L^-) $\star N^0 \rightarrow \nu h / \nu Z / \ell^{\pm} W^{\mp}$ $\star L^{\pm} \rightarrow \ell^{\pm} h / \ell^{\pm} Z / \nu W^{\pm}$

 \star Search for pair production: $\star pp \to N^0 L^{\pm}$ $\star pp \to L^{\pm} L^{\mp}$

arXiv:2008.07949

ICCPA 2020

Type III Seesaw — analysis

★ ATLAS analysis focuses on the following signature:

- *** 2 lepton** final state:
 - ★ opposite **sign** (OS) or same **sign** (SS)
 - ★ same flavour (ee, $\mu\mu$) or opposite flavour ($e\mu$)

★ 2 jets from quark hadronisation

 \star Large **missing energy** (E_T^{miss}) due to neutrinos

★ Events split into 3 sets of 6 regions:

★ 6x signal (SR), 6x control (CR) and 6x validation (VR)

★ Backgrounds:

- ★ Prompt leptons (based on detailed MC)
 - \star $t\bar{t}$ pairs, diboson production
- *** Non-prompt or "fake" leptons** (data driven methods)
 - ★ conversions, jets, semileptonic c/b, charge misID,...

ICCPA 2020

Type III Seesaw — number of events

Comparison of number of observed (data) and expected events in
 Background control and validation and signal regions

ICCPA 2020

Type III Seesaw — limit

15

- ★ Lower limits on masses of Type III Seesaw heavy leptons at the 95 % CL
 - Heavy leptons are excluded below masses of 790 GeV using only final states with two light leptons

 H_T — scalar sum of the transverse momenta of selected leptons and jets

ICCPA 2020

Summary

★ Many different processes have signature with two leptons and jets in the final state

★ The presentation focuses on recently published results from ATLAS Experiment on the full data set of Run 2 (2015-2018, 13TeV, $139 \ fb^{-1}$)

★ Leptoquarks

★ $LQ \rightarrow e/\mu + qq$ (c, b jets) — excluded up to **1.8 (1.7) TeV** in electron (muon) ★ $LQ \rightarrow \tau + t$ — excluded up to **1.4 TeV** ★ $LQ \rightarrow e/\mu + t$ — excluded up to **1.48 TeV** / **1.47 TeV** for electron / muon

★ Lepton Flavour Violation

 $\star Br(Z \to e\tau) \le 8.1 \times 10^{-6}$ $\star Br(Z \to \mu\tau) \le 9.5 \times 10^{-6}$

★ Type III Seesaw

★ Heavy leptons (N^0, L^+, L^-) are excluded below masses of **790 GeV**

Backup

Type III Seesaw — analysis

 \star ATLAS analysis focuses on the following signature:

- *** 2 lepton** final state:
 - ★ opposite **sign** (OS) or same **sign** (SS)
 - ★ same flavour (ee, $\mu\mu$) or opposite flavour ($e\mu$)
- ★ 2 jets from quark hadronisation
- \star Large **missing energy** (E_T^{miss}) due to neutrinos
- ★ Events split into 3 sets of 6 regions:
 - \star 6x signal (SR), 6x control (CR) and 6x validation (VR)

★ Two different approaches:

- ★ Cut-based presented here
- ★ Multivariate ML approach in preparation
 Cut-based analysis

ICCPA 2020

Type III Seesaw — background

