Searches for Long-Lived Particles with the ATLAS Detector

Lesya Horyn on behalf of the ATLAS Collaboration

Overview

- What are long lived particles? How do we search for them?
- Many LLP searches in ATLAS I will focus on results that use the full Run 2 dataset (139 fb⁻¹ of pp data at $\sqrt{s} = 13$ TeV)
 - ▶ Search for R-Parity Violating (RPV) SUSY → displaced vertices and muon signatures
 - ▶ Search for Gauge Mediated Supersymmetry Breaking (GMSB) SUSY → displaced leptons — new today!
 - Brief sampling of some previous results

- Standard Model is full of long lived particles!
 - Result from small couplings, near degenerate masses, heavy mediators

- Standard Model is full of long lived particles!
 - Result from small couplings, near degenerate masses, heavy mediators

- Standard Model is full of long lived particles!
 - Result from small couplings, near degenerate masses, heavy mediators

- Standard Model is full of long lived particles!
 - Result from small couplings, near degenerate masses, heavy mediators

- Standard Model is full of long lived particles!
 - Result from small couplings, near degenerate masses, heavy mediators

Long lived particles

Signatures

- Huge phase space of possible BSM signatures!
 - Requires dedicated effort
- Technically, very challenging
 - Identification of metastable SM particles require huge effort (e.g. b-jets, **T** leptons)
- But, has several advantages:
 - Probe underexplored models that allow TeV-scale BSM physics!
 - Unconventional signatures have no irreducible SM background
 - Probe small cross sections
 - Signature focused searches can be applied to many BSM models

Technical Challenges

d₀ is the distance of closest approach to the interaction point of a track in the x-y plane

- Suite of techniques and algorithms must be developed to probe nonstandard signatures — requires collaboration across community
 - Custom tracking for impact parameters (d₀) up to 300 mm
 - Modified identification algorithms for displaced objects
 - Displacement-independent quality requirements need to be defined

Background Challenges

- Lack of SM background means that backgrounds are not well modeled in MC
 - Common backgrounds from interactions with detector material, high-d₀ tails of heavy flavor decays, cosmic-ray muons
 - Must be estimated in data → typically statistically limited, need clever regions to maintain blinding
- Often use ABCD method use 2 uncorrelated variables in the signal selection to make an estimate

- High mass displaced vertex (DV)
 + muon with large d₀
 - Sensitivity to R-parity violating (RPV) SUSY
 - Small RPV coupling leads to long-lived stop lightest Supersymmetric Particle (LSP)

- Significant improvements over Run I analysis
 - Improved vertexing increases selection efficiency by 20%
 - MET trigger used along with MS-only trigger to select events with displaced muons
 - Muons not included in trigger MET calculation

956

• Signature mimicked by interactions with material, cosmic muons

Veto vertices originating in detector material common to all analyses with DVs!

956

• Signature mimicked by interactions with material, cosmic muons

Veto cosmic-ray muons individual muons back-to-back with MS activity

1956

<u>2003.</u>

• Signature mimicked by interactions with material, cosmic muons

Veto cosmic-ray muons individual muons back-to-back with MS activity

2003.11956

• Signature mimicked by interactions with material, cosmic muons

• Use lack of correlation between DV and muon in background to estimate number of events via ABCD

<u>2003.11956</u>

- Yields consistent with background no SUSY here
- Exclude stop mass up to 1.75 TeV around ~0.1 ns lifetime.

1956

2003.1

- Search for two leptons with high p_{T} and high d_0
 - Unique sensitivity to slepton in GMSB SUSY at the LHC
 - LSP gravitino, suppressed decay with no secondary vertex
 - Last limits at ~90 GeV from LEP (0507048, ALDO)
 - First LHC analysis to target this model with this signature

- Nonstandard backgrounds estimated from data
 - New in LHC environment → need to determine what they are!

Algorithmic Fakes

Extended tracking introduces more fake tracks

displacement-independent quality cuts defined to reduce contribution

Fake electrons more common than fake muons

2 in an event are uncorrelated → ABCD

ee and $e\mu$ channels

- Nonstandard backgrounds estimated from data
 - ▶ New in LHC environment → need to determine *what* they are!

Cosmic Muons

Could reconstruct 2 high-d₀ correlated muons from 1 cosmic ray muon — challenging estimate for µµ channel!

Time to traverse the detector ≈ bunch crossing

Muons missing detector info

- → other muon can't be ID'd as a cosmic
- → MS timing cut reduces contribution

Use de-correlation between muon quality and cosmic tag to do ABCD-like estimate

NEW

- Expect < 1 event per region, observe 0 no SUSY here either
- Exclude huge range of phase space previously under-explored!
 - Slepton co-NSLP scenarios up to 800 GeV for 0.1 ns!

NEW

Lots of LLP searches in ATLAS!

• Many explorations of SUSY and exotic models with partial Run 2 dataset (34 fb⁻¹) with a variety of signatures

Displaced Vertices in the MS and ID (1911.12575)

Target hadronic signature of Hidden Sector model mediator φ decaying into long-lived scalars s
 Vertexing in ID and MS
 ID backgrounds from material interactions, MS from jets not fully absorbed by calorimeter

Exclude ϕ with mass 125 GeV to 1000 GeV Exclude **s** with masses from 8 GeV to 400 GeV and lifetimes 0.1 ns - 3 ns $_p$

2

Lots of LLP searches in ATLAS!

 Many explorations of SUSY and exotic models with partial Run 2 dataset (34 fb⁻¹) with a variety of signatures

Magnetic Monopoles and High-Electric-Charge Objects (1905.10130)

5000x ionization vs MIP!

Leaves high ionization in Transition Radiation Tracker, very narrow signature in calorimeter

Exclude scalar monopole m < 1.85 TeV

Conclusions

- Searches for LLPs are technically challenging, but allow us to explore lots of undercovered phase space and small cross sections
- Collaboration is crucial to develop non-standard algorithms
- Many more searches that I couldn't cover today
- Lots of LLP searches with Run 2 dataset in the works stay tuned!

Lesya Horyn | University of Chicago

- Event selection:
 - 2 signal leptons with $p_T > 65$ GeV, $d_0 > 3$ mm
 - $dR_{\parallel} > 0.2$
 - No cosmic-tagged muons
 - ID tracks associated to leptons
 - $\chi^2 < 2$, # missing hits after the first hit < 2
 - Signal Muons
 - Combined track χ^2 < 3, hits in 3 precision tracking layers in MS, direct ϕ measurement, isolated in calorimeter and tracker
 - Signal Electrons
 - (track p_T electron p_T)/electron p_T > 0.5, isolated in calorimeter and tracker

• Fakes and heavy flavor impossible to disentangle in electrons, separate estimate for muons found to be negligible

Region	SR-ee	$SR-\mu\mu$	SR-eµ
Fake + Heavy-Flavor	0.46 ± 0.10	_	$0.007^{+0.019}_{-0.007}$
Cosmics	_	$0.11\substack{+0.20 \\ -0.11}$	_
Expected Background	0.46 ± 0.10	$0.11\substack{+0.20 \\ -0.11}$	$0.007\substack{+0.019\\-0.007}$
Observed events	0	0	0

Displaced Vertices in ID and MS

	Background	Muon RoI Cluster trigger
	events	events with a good MSVx
Has IDVx passing full signal selection	Bkg+IDVx	Sig
Agnostic to IDVx	Bkg	Sig–IDVx

	n _{obs}	
Region Bkg	6,099,660	
Region <i>Bkg+IDVx</i>	45	
Region Sig–IDVx	156,805	
	n _{pred}	nobs
Region Val, 2-trk	$11,269 \pm 46 (\text{stat.})$	11,470
Region Trig, 3-trk	$1750 \pm 64 (\text{stat.})$	2132
Region Sig	1.16 ± 0.18 (stat.) ± 0.29 (syst.)	1

Magnetic Monopoles

Lower limits	on the mass	of Drell-Ya	n magnetic	monopoles	and HECOs	[GeV]
			<u> </u>	1		

	$ g = 1g_{\mathrm{D}}$	$ g = 2g_{\mathrm{D}}$	z = 20	z = 40	z = 60	z = 80	z = 100
Spin-0	1850	1725	1355	1615	1625	1495	1390
Spin-1/2	2370	2125	1830	2050	2000	1860	1650

g is the fundamental magnetic charge z is the electric charge of a HECO