

1

Measurement of the production cross-section of J/ ψ and $\psi(2S)$ mesons at high transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

Tamar Zakareishvili, on behalf of the ATLAS collaboration High Energy Physics Institute of Tbilisi State University

The author was supported by Shota Rustaveli National Science Foundation of Georgia, grant projects: #FR 17-184, and #48/04.

Introduction

Analysis goal

- Perform the measurement of J/ψ and $\psi(2S)$ production cross-sections;
- Separately for prompt and non-prompt contributions;
- Measure $\psi(2S)$ to J/ψ production ratios;
- Reach highest possible transverse momentum;
- 12 bins in p_T between 60 GeV up to 360 GeV, 3 bins in rapidity;
- Broaden the scope of comparison between theory and experiment.

Strategy

- Full Run 2 statistics of LHC pp collisions at $\sqrt{s}=13$ TeV with ATLAS detector;
- Integrated luminosity L = 139 fb⁻¹;
- Use a single-muon trigger, with $p_T > 50$ GeV;
- Select charmonium candidates as pairs of oppositely charged muons.
- Perform 2-dimensional unbinned maximum-likelihood fits to mass and pseudo-proper decay time (Formula 1) to extract yields. The transverse distance L_{xy} between the primary vertex and the dimuon vertex is used to calculate the pseudo-proper decay time: $m_{\mu\mu} L_{xy}$ (1)

$$\tau = \frac{m_{\mu\mu}}{p_{\rm T}} \cdot \frac{L_{xy}}{c} \qquad (1)$$

where $m_{\mu\mu}$ and p_T are respectively the mass and the transverse momentum of the dimuon.

• Apply corrections for acceptance, efficiency and bin migration.

Results

- After the 2D fit procedures are performed, double-differential cross sections are calculated for prompt and non-prompt J/ψ and $\psi(2S).$
- Non-prompt production results are compared with FONLL and gives good agreement at the lower p_T , but with FONLL predicting somewhat higher cross-sections at high- p_T .

3

Summary

- For J/ψ and $\psi(2S)$ charmonium states, the cross-sections are measured separately for prompt and non-prompt production mechanisms.
- The results show similar p_T -dependence for prompt and non-prompt differential cross sections, with non-prompt fractions close to constant for both J/ψ and $\psi(2S)$ in this range of transverse momenta.
- Where they overlap, results for prompt production are consistent with similar results obtained by the CMS collaboration.

- The results for non-prompt production are compared with the predictions of the FONLL model with default set of parameters.
- These predictions are consistent with the present measurement at the low end of the p_T range, but exceed the experimental values at large transverse momenta.
- *References*:

[1] ATLAS Collaboration, Measurement of the production cross-section of J/ ψ and ψ (2S) mesons at high transverse momentum in pp collisions at \sqrt{s} =13 TeV with the ATLAS detector, ATLAS-CONF-2019-047.

[2] CMS Collaboration, Measurement of quarkonium production cross sections in pp collisions at √s=13TeV, Phys. Lett. B780(2018) 251.

Measurement of the production cross-section of J/ ψ and $\psi(2S)$ mesons at high transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector

(Fr)

Tamar Zakareishvili,

on behalf of the ATLAS collaboration

High Energy Physics Institute of Tbilisi State University

Analysis goals

- Perform the measurement of J/ψ and $\psi(2S)$ production cross-sections;
- Separately for prompt and non-prompt contributions;
- Measure $\psi(2S)$ to J/ψ production ratios;
- Reach highest possible transverse momentum;
- + 12 bins in $\boldsymbol{p}_{_{T}}$ between 60 GeV up to 360 GeV, 3 bins in rapidity;
- Broaden the scope of comparison between theory and experiment.

Strategy

- Full Run 2 statistics of LHC pp collisions at $\sqrt{s}=13$ TeV with ATLAS detector [2];
- Integrated luminosity L = 139 fb⁻¹;
- Use a single-muon trigger, with $p_{\rm T}$ > 50 GeV;
- Select charmonium candidates as pairs of oppositely charged muons.
- Perform 2-dimensional unbinned maximum-likelihood fits to mass and pseudo-proper decay time (Formula 1) to extract yields. The transverse distance L_{xy} between the primary vertex and the dimuon vertex is used to calculate the pseudo-proper decay time:

$$\tau = \frac{m_{\mu\mu}}{p_{\rm T}} \cdot \frac{L_{xy}}{c} \qquad (1)$$

where $m_{\mu\mu}$ and p_T are respectively the mass and the transverse momentum of the dimuon. Apply corrections for acceptance, efficiency and bin migration.

Differential cross sections

Fit model

The fit model PDF is described by a sum of terms, with each term factorized into a function f_i of charmonium mass m and a function h_i of pseudo-proper decay time τ , with m- τ correlations allowed in one of the terms:

	7
$PDF(m, \tau) =$	$\sum \kappa_i f_i(m) \cdot (h_i(\tau) \otimes R(\tau)) \cdot C_i(m,\tau).$
	$\overline{i=1}$

i	Туре	P/NP	$f_i(m)$	$h_i(\tau)$	$C_i(m,\tau)$
1	J/ψ	Р	$\omega G_1(m) + (1-\omega)CB_1(m)$	$\delta(au)$	$BV(m, \tau, \rho)$
2	J/ψ	NP	$\omega G_1(m) + (1-\omega)CB_1(m)$	$E_1(\tau)$	1
3	$\psi(2S)$	Р	$\omega G_2(m) + (1-\omega)CB_2(m)$	$\delta(au)$	1
4	$\psi(2S)$	NP	$\omega G_2(m) + (1-\omega)CB_2(m)$	$E_2(\tau)$	1
5	Bkg	Р	В	$\delta(au)$	1
6	Bkg	NP	$E_4(m)$	$E_5(\tau)$	1
7	Bkg	NP	$E_6(m)$	$E_7(\tau)$	1
			-		

Notations: G – Gaussian; CB – Crystal Ball; E – Exponential; B – Bernstein polynomials; BV – Correlation term of the bivariate Gaussian distr.

Production fractions

The non-prompt differential cross-section overlaid with FONLL predictions

The comparison gives good agreement at the lower p_T , but with FONLL [3] predicting somewhat higher cross-sections at high- p_T .

The p_T dependence of prompt and non-prompt contributions in the p_T range covered by this measurement is similar, resulting in the non-prompt fractions being close to constant, for both J/ ψ and ψ (2S).

Summary

- For J/ψ and $\psi(2S)$ charmonium states, the cross-sections are measured separately for prompt and non-prompt production mechanisms.
- The results show similar p_T -dependence for prompt and non-prompt differential cross sections, with non-prompt fractions close to constant for both J/ ψ and ψ (2S) in this range of transverse momenta.

- Where they overlap, results for prompt production are consistent with similar results obtained by the CMS collaboration [4].
- The results for non-prompt production are compared with the predictions of the FONLL model with default set of parameters.
- These predictions are consistent with the present measurement at the low end of the p_T range, but exceed the experimental values at large transverse momenta.

References:

[1] ATLAS Collaboration, Measurement of the production cross-section of J/ ψ and ψ (2S) mesons at high transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector, ATLAS-CONF-2019-047. [2] ATLAS collaboration, The ATLAS Experiment at the CERN Large Hadron Collider, 2008 JINST 3 S08003. [3] FONLL Heavy Quark Production, M. Cacciari, http://www.lpthe.jussieu.fr/~cacciari/fonll/fonllform.html. [4] CMS Collaboration, Measurement of quarkonium production cross sections in pp collisions at $\sqrt{s}=13$ TeV, Phys. Lett. B780(2018) 251.

The author was supported by Shota Rustaveli National Science Foundation of Georgia, grant projects: #FR 17-184, and #48/04.