

5th International Conference on Particle Physics and Astrophysics (ICPPA2020), 5-9 October 2020

Measurement of the CP violation in $B_s^0 \rightarrow J/\psi\phi$ decays in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector

Oleg Meshkov on behalf of the ATLAS Collaboration Lomonosov Moscow State University Lebedev Physical Institute of the Russian Academy of Sciences

Analysis strategy

CP-violation in $B_s^0 \rightarrow J/\psi \phi$ decays

Flavour Tagging

- $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay = decay of pseudoscalar to vector-vector
- Final state: admixture of CP-odd ullet(L = 1) and CP-even (L = 0, 2)states
- Distinguishable through timedependent angular analysis
- Non-resonant S-wave decay

Interference of direct decay and decay with mixing into the same final state of $B_s^0 \rightarrow J/\psi \phi$ gives rise to time-dependent CP violation (CPV)

- b-quarks are produced in quarkantiquark pairs
- Initial flavour is correlated with the charge of decay product $(e/\mu/jet)$
- Measuring weighted sum of charges of tracks in a cone around an opposite-side $e/\mu/jet$ gives information about B_s^0 meson flavour
- Method calibrated with $B^{\pm} \rightarrow$ $J/\psi K^{\pm}$ decays

 $B_s^0 \rightarrow J/\psi K^+K^-$ contributes to the final state and is included in the differential decay rate due to interference with the signal $B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay

The transversity angles, $\Omega = (\Theta_T, \Psi_T, \phi_T)$ are defined as below

- CPV phase ϕ_s is the weak phase difference between the B_s^0 B_s^0 mixing amplitude and the b \rightarrow c \overline{c} s decay amplitude
- In the Standard Model (SM) the ϕ_s is related to the CKM matrix and is small:

$$\varphi_{\rm s} \simeq -2\beta^{\rm s} = -2\arg \frac{V_{\rm ts}V_{\rm tb}^*}{V_{\rm cs}V_{\rm cb}^*} = -0.03696^{+0.00072}_{-0.00082} \,\text{rad}$$

- New Physics (NP) processes could contribute to the mixing box diagrams, potentially allowing for large deviations in ϕ_s from the SM prediction
- Other parameters describing Bs mixing and decay are mass difference $\Delta m_s = m_H - m_L$, decay width difference $\Delta \Gamma_s = \Gamma_L - \Gamma_L$ $\Gamma_{\rm H}$, and $\Gamma_{\rm s} = \frac{\Gamma_{\rm L} + \Gamma_{\rm H}}{2}$ — mean of the two decay widths ("L" and "H" stand for light and heavy mass eigenstates respectively).

Tagging power and efficiency

				Tag method	ϵ_x [%]	D_x [%]	$T_x \ [\%]$	
		B backg	round PDF	Tight muon	4.50 ± 0.01	43.8 ± 0.2	0.862 ± 0.0	009
Indian od Maximum	Likelihaad Lit			Electron	1.57 ± 0.01	41.8 ± 0.2	0.274 ± 0.0	004
Jndinned Maximum	LIKEIINOOD FIL			Low- $p_{\rm T}$ muo	n 3.12 ± 0.01	29.9 ± 0.2	0.278 ± 0.0	006
	5-9 Oct			Jet	12.04 ± 0.02	16.6 ± 0.1	0.334 ± 0.0	006
N		$\Lambda_{\rm b}$	packground	Total	21.23 ± 0.03	28.7 ± 0.1	1.75 ± 0.0	01
$\operatorname{n} \mathcal{L} = \sum_{i+1} \frac{w_i}{1} \cdot \ln[f_s \cdot \mathcal{F}_s(m_i, t_i, t_i)]$	$\sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B Q_x), p_{T_i}) + f_s \cdot f_{B^0} \cdot \mathcal{F}_{B^0}(m_i, t_i, t_i)$	$\sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B Q_x), p_{T_i})$	PDF • Effici	ency: Fractic	on of signals wi	th specific ta	gger, $\varepsilon = \frac{N_{tag}}{N_{Bc}}$	<u>gged</u> cand
	Signal PDF $+f_s \cdot f_{\Lambda_b} \cdot \mathcal{F}_{\Lambda_b}(m_i, t_i, c_i)$	$\sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B Q_x), p_{T_i})$	• Dilut	ion: D = (1 –	2w), where w	is the miss-ta	ag probabilit	ty
Trigger lifetime efficiency weights	$+(1-f_s\cdot(1+f_{B^0}+f_{\Lambda_b}))\cdot\mathcal{F}_{bkg}(m_i,t_i,\sigma)$	$[\sigma_{m_i}, \sigma_{t_i}, \Omega_i, P_i(B Q_x), p_{T_i})]$	• Tagg •	ing Power: fi Depends on TP = εD ² = ε	gure of merit o dilution and ef (1 – 2w) ²	f tagger perf fficiency:	ormance	
Physics parameters:		PDF for oth	ier		()			
	Observables	background	d sources	Syste	ematic	Uncer	rtaint	ie
 CPV phase φ_c 		Uncertainty in the calibration of			3			
Docov widths: AF F		the tag probability		$\phi_s \Delta \Gamma_s$ [10 ⁻³ rad] [10 ⁻³ ps	$ \Gamma_s \qquad A_{\parallel}(0) ^2 \\ [10^{-3} \text{ ps}^{-1}] \qquad [10^{-3}] $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\frac{\delta_{\perp}}{0^{-3} \operatorname{rad}} \frac{\delta_{\parallel}}{[10^{-3} \operatorname{rad}]} \frac{\delta_{\parallel}}{[10^{-3} \operatorname{rad}]} \frac{\delta_{\parallel}}{[10^{-3} \operatorname{rad}]}$	$\delta_{\perp} - \delta_{\perp}$ 10^{-3} ra
• Decay widths: $\Delta \Gamma_s$, Γ_s • Decay amplitudes: $ A_0(0) ^2$, $ A_{\parallel}(0) ^2$, δ_{\parallel} , δ_{\perp}	 Base observables: m_i, t_i, Ω_i Conditional observables per-candidate: resolutions: σ σ (R n dependent) 	Effect of residual misalignment (studied in signal MC)	 Tagging Acceptance ID alignment Best candidate selection Background angles model Choice of fit function 	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccc} 0.3 & 0.2 \\ < 0.1 & 1.0 \\ 0.5 & < 0.1 \\ 0.7 & 0.5 \end{array}$	$\begin{array}{cccc} 0.2 & 1.1 \\ 0.8 & 2.6 \\ < 0.1 & < 0.1 \\ 0.2 & 0.2 \\ < 0.1 & 0.6 \\ \end{array}$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2.3 7.0 < 0.1 7.5
• S_{-1}	-resolutions. o_{m_i} , o_{t_i} (B- p_{T_i} dependent)		Choice of $p_{\rm T}$ bins Choice of mass interv	1.3 0.5	< 0.1 0.4 0.3	0.5 1.2 0.3 1.3	1.5 7.2 4.4 7.4	1.0 2.3
$3-wave. A_{s}(0) , 0_{s}$	 tagging probability and method: P(B Q) 	Contributions from peaking	Dedicated backgrounds:	23 11	< 0.1 0.2	3.0 1.5	10 23	2.1
 Δm_s fixed to PDG 		backgrounds $B_d \rightarrow J/\psi K^*$, $B_d \rightarrow$	Δ_d Δ_b	1.6 0.3 0.1	0.2 0.5	1.2 1.8	10 25 14 30 15 40	0.8 < 0.1
		J/ψKπ and $\Lambda_b \rightarrow J/\psi$ Kp,	Fit model:	1.0 < 0.1	< 0.1 < 0.1	< 0.1 < 0.1	12 20	< 0.1
			Time res. $p_{\rm T}$ bins	1.4 $1.10.7$ $0.50.2$ -0.1	0.3 0.5 0.5 0.5 0.5 0.1 0.1 0.1	0.0 0.8 0.8 0.1 0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.2 0.2	2.2 14 9 15	0.4
Fit Rocults/12 To// Da	$h = 80.5 \text{ fh}^{-1}$		Fit bias	0.5 < 0.1	< 0.1 < 0.1 1.2 1.3	< 0.1 0.2 0.4 1.1	0 15 3.3 19	0.3
In hestilist ier De	(a, 00.5)	Uncertainties of fit model derived	Total	20 2.2	1.8 2.2	3.4 4.4	51 84	38
t projections	Parameter Value Statistical Systematic 3.8	in pseudo-experiment studies						

Results((13 TeV	' Data,	80.5 fb ⁻¹	

-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

4^E -1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8

are found, and shown as solution (a) and (b) in the table of results.

Combination with the previous from Run 1

		Solution (a)			Solution (b)		-δ 		
Parameter	Value	Statistical	Systematic	Value	Statistical	Systematic		ATLAS	
		uncertainty	uncertainty		uncertainty	uncertainty	$\int GMS, J/\psi K^+K^-, 116.1 \text{ fb}^-$	√s = 7, 8, and 13 TeV	
ϕ_s [rad]	-0.087	0.036	0.019	-0.088	0.036	0.019	-	68% CL contours	
$\Delta\Gamma_s \ [\text{ps}^{-1}]$	0.0641	0.0043	0.0024	0.0640	0.0043	0.0024		-	
$\Gamma_s [ps^{-1}]$	0.6697	0.0014	0.0015	0.6698	0.0014	0.0015	0.1-		
$ A_{\parallel}(0) ^2$	0.2221	0.0017	0.0022	0.2218	0.0017	0.0022	- $1 \text{ HCb} . 1/w K^+ K^- 4.9 \text{ fb}^{-1}$	— SM	
$ A_0(0) ^2$	0.5149	0.0012	0.0031	0.5149	0.0012	0.0031			
$ A_{S} ^{2}$	0.0343	0.0031	0.0044	0.0348	0.0031	0.0044	0.08-	LHCb, all channels, 4.9 fb ⁻¹	
δ_{\perp} [rad]	3.22	0.10	0.05	3.03	0.10	0.05		-	
δ_{\parallel} [rad]	3.36	0.05	0.08	2.95	0.05	0.08		-	
$\delta_{\perp} - \delta_S$ [rad]	-0.24	0.05	0.04	-0.24	0.05	0.04		-	
I	1					1	0.06- ATL	AS, $J/\psi K^+ K^-$, 99.7 fb ⁻¹	
Compatible results with LHCb and CMS and the SM prediction									
$\frac{1}{2} = 0.2 \qquad 0 \qquad 0.2$									
								ϕ_s [rad]	

These results are published in: <u>arXiv:2001.07115</u> (Submitted to EPJC)