Search for electroweak production of charginos and neutralinos in multileptonic final states with the ATLAS experiment

Marco Aparo
University of Sussex, UK
On behalf of the ATLAS Collaboration

Electroweak SUSY: the physics case

- Supersymmetry (SUSY) introduces a fermion-boson symmetry (As = 1/2) in the Standard Model (SM) [1]
- R-Parity
 \[P_R = (-1)^{3B + 2L + 2S} \]
- If R-Parity is conserved
 \[\tilde{\chi}^0_1 \text{ is stable and a good dark matter candidate} \]
- Mass of strongly interacting \(\tilde{q}/\tilde{g} \) excluded up to \(\sigma(\text{TeV}) \) scale
 \[\tilde{\chi}^0_1, \tilde{\chi}^0_2 \text{ may be the dominant SUSY process} \]
- Charginos, \(\tilde{\chi}^{\pm}_1 \text{ (i=1,2), and neutralinos, } \tilde{\chi}^0_i \text{ (i=1,2,3,4),} \) produced and studied via their electroweak interaction
- \(\tilde{\chi}^+_1/\tilde{\chi}^0_1 \rightarrow WZ/h \rightarrow 2/3 \text{ leptons are key analyses to search for SUSY} \)
- Full Run 2 analysis recently released [4]
 - No significant deviation from SM observed \(\rightarrow \) upper limits on \(m(\tilde{\chi}^+_1/\tilde{\chi}^0_1) \) and \(m(\tilde{\chi}^0_i) \) using the CLs prescription

\[\tilde{\chi}^{\pm}_1, \tilde{\chi}^0_1 \rightarrow WZ/h \rightarrow 3\ell \text{ search} \]

Comparison of the observed data and expected SM background yields in the SRs for \(WZ \) (left) and \(Wh \) (right) models [4]

- SIGNAL SEARCH STRATEGY
 - Same flavour opposite sign (SFOS) lepton pair \(\rightarrow \) + 1 extra lepton
 - Same flavour same sign (SFSS) lepton pair
 - Different flavour opposite sign (DFOS) lepton pair

Simplified models assumptions:
- R-Parity conserving
- \(\tilde{\chi}^{\pm}_1/\tilde{\chi}^0_1 \rightarrow \text{Wino-like}; \tilde{\chi}^0_1 \rightarrow \text{Bino-like} \)
- \(m(\tilde{\chi}^+_1) = m(\tilde{\chi}^0_1) > m(\tilde{\chi}^0_2) \)
- On-shell decays to \(W/Z/h \), with 100% BR

3 isolated e or \(\mu + E_T^{miss} + \) light (not b-tagged) jets

- TARGET
 - 1 Same flavour Opposite Sign (SFOS) lepton pair
 - \(m(\tilde{\chi}^{\pm}_1) > m(\tilde{\chi}^0_1) \)
 - \(m(\tilde{\chi}^{\pm}_1) < m(\tilde{\chi}^0_1) \)
 - 1 Same flavour Opposite Sign (SFOS)
 - 1 Same flavour Same Sign (SFSS) lepton pairs

- Production of \(\tilde{\chi}^+_1, \tilde{\chi}^0_1 \) decaying to 3 \(\ell \) via \(WZ \) (left) or \(Wh \) (right)

Induced backgrounds (e.g. prompt leptons from SM \(W/Z \) or dijet or dijet-like backgrounds with data-driven techniques)

- \(\tilde{\chi}^{\pm}_1, \tilde{\chi}^0_1 \) decaying to \(2 \) \(\ell \) same-sign via \(Wh \)

- Full Run 2 analysis recently released [4]
- No significant deviation from SM observed \(\rightarrow \) upper limits on \(m(\tilde{\chi}^+_1/\tilde{\chi}^0_1) \) and \(m(\tilde{\chi}^0_i) \) using the CLs prescription

\[\tilde{\chi}^{\pm}_1, \tilde{\chi}^0_1 \rightarrow Wh \rightarrow 2\ell \text{ same-sign search} \]

Limits at 95% CL for \(WZ \) (left) and \(Wh \) (right) models in the \(3\ell \) channel [4]

- 2 isolated same-sign (SS) e or \(\mu + E_T^{miss} + \) light (not b-tagged) jets

- Simplified model with same assumptions as \(3\ell \) case
- \(2\ell \)-SS search is complementary to \(3\ell \) search \(\rightarrow \) facilitate statistical combination of multileptonic searches
- Analysis strategy similar to \(3\ell \) case (orthogonal SRs/CRs/VRs)
- Some of the expected backgrounds include SM \(WZ \) (irreducible with prompt leptons) and lepton charge mis-reconstruction, or \(\text{charge-flip} \) (reducible)
- Early Run 2 results show good agreement with the SM prediction [5]
 - Upper limits on \(m(\tilde{\chi}^+_1/\tilde{\chi}^0_1) \) and \(m(\tilde{\chi}^0_i) \) using the CLs prescription
- Stay tuned for more exciting ATLAS SUSY results!

Limits at 95% CL for the \(Wh \) model in \(2\ell \)-SS channel [5]

References: