# Recent Results of Dark Sector Searches with the BABAR Experiment

### Bertrand Echenard Caltech on behalf of the BABAR collaboration

ICPPA 2020 – virtual space



### Dark sectors in a nutshell

#### What are dark sectors / hidden sectors

- New particle(s) that don't couple directly to the SM
- Theoretically motivated: many BSM scenarios (e.g. EWSB) and string theory include dark sectors
- Could have rich structure (SM structure is non-trivial)
- Dark matter could reside inside dark sector (lot of recent activity around light hidden sector dark matter)

#### Interaction with the SM through "portals"

Lowest order portals:

- Vector  $\varepsilon B^{\mu\nu} A'_{\mu\nu}$
- Scalar  $H^2 (\mu S + \lambda S^2)$
- Neutrino yHLN
- Axion  $1/f_a(c_1 tr(G\tilde{G}) + c_2 F\tilde{F} + c_3 \partial_\mu j^\mu) a$  (dim 5)

# С b V e mediators A',S,N,a Dark Fermions **Dark Forces** Dark Higgs

**Dark Matter** 

### Motivates broad exploration of dark sector. Low energy e<sup>+</sup>e<sup>-</sup> colliders offer an ideal environment to study them.

Bertrand Echenard - ICPPA - Sep 2020 - p.2

#### Extensive "dark sector" program conducted at BABAR over the last decade

#### Search for dark photon

 $\begin{array}{c} \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \gamma \ \mathbf{A}^{\prime} \ , \ \ \mathbf{A}^{\prime} \rightarrow \mathbf{e}^{+}\mathbf{e}^{-}, \ \mu^{+}\mu^{-} \\ \mathbf{e}^{+}\mathbf{e}^{-} \rightarrow \gamma \ \mathbf{A}^{\prime} \ , \ \ \mathbf{A}^{\prime} \rightarrow \text{invisible} \\ \pi^{0} \rightarrow \gamma \ \mathbf{I}^{+}\mathbf{I}^{-}, \ \eta \rightarrow \gamma \ \mathbf{I}^{+}\mathbf{I}^{-}, \ \varphi \rightarrow \eta \ \ \mathbf{I}^{+}\mathbf{I}^{-}, \dots \end{array}$ 

#### Search for dark Higgs boson

 $e^+e^-\!\rightarrow h'\,A'$  ,  $h'\rightarrow A'\,A'$ 

Search for dark boson(s)

 $e^+e^- \rightarrow \gamma A' \rightarrow W' W''$ 

Search for dark hadrons

 $e^+e^- \rightarrow \pi_D + X$ ,  $\pi_D \rightarrow e^+e^-$ ,  $\mu^+\mu^-$ 

Search for "muonic dark force"  $e^+e^- \rightarrow \mu^+\mu^- Z', Z' \rightarrow \mu^+\mu^-$ 

Search for leptophilic dark scalar  $e^+e^- \rightarrow \tau^+\tau^- h'$ ,  $h' \rightarrow \mu^+\mu^-$ 

Search for axion  $B \rightarrow Ka, a \rightarrow \gamma \gamma$ 

Search for self-interacting DM  $e^+e^- \rightarrow Y_D \rightarrow A'A'A' \rightarrow 3X^+X^- (X=I,\pi)$ 

+ other DM searches

#### This talk will discuss recent results on leptophilic dark scalar and preliminary results on axion

### The BABAR experiment

BABAR collected ~500 fb<sup>-1</sup> around the  $\Upsilon$ (4S),  $\Upsilon$ (3S) and  $\Upsilon$ (2S) resonance between 1999 - 2008





#### Collaboration is still active more than 10 years after data taking ended !!!

Many BSM models predict the existence of an extended Higgs sector with new light gauge singlets that can mix with the Higgs boson. Strong experimental constraints on this scenario.

If the new scalar interacts predominantly with leptons rather than quarks, experimental constraints are significantly weakened due to the reduced coupling to electrons

A leptophilic scalar could explain the g-2 anomaly (1606.04943, 1605.04612) and the more recent KOTO excess (2001.06522)



#### A few features

- Mass proportional coupling  $\rightarrow$  produced preferentially via its coupling to  $\tau$
- Decays preferentially to the most massive lepton-pair kinematically accessible
- Long-lived particle for sufficiently low values of coupling constant → search for both prompt and displaced decays

Accepted by PRL

Search for dielectron and dimuon decay of a leptophilic dark scalar ( $\phi_L$ ) radiated off a tau lepton:

$$e^+e^- \rightarrow \tau^+\tau^- \phi_L, \phi_L \rightarrow I^+I^- (I=e,\mu)$$

Analysis strategy - see 2005.01885 for details

- Consider all 1-prong decays of the tau
- Train BDT to increase signal purity (see backup slide)
- Optimize analysis for each final state and prompt or long-lived  $\varphi_{\text{L}}$





Data/MC discrepancy due to non-modelled MC components (two-photon, ISR, highmultiplicity QED,...) but this discrepancy has very limited impact on the results



Bertrand Echenard - ICPPA - Sep 2020 - p.6

Extract signal as a function of dark scalar mass with fits over sliding intervals (background MC independent)



Fit 966 mass hypotheses, step size taken as signal resolution (1-50 MeV depending on  $m_{\phi}$ )

Fit includes signal, peaking and continuum background components:

- Signal modeled from signal MC and interpolated between simulated mass points
- Continuum background modelled by second or third order polynomials
- Peaking background ( $\pi^0$ , J/ $\psi$ ,  $\psi$ (2S)) modelled from bkg MC

Signal efficiency validated by data/MC comparison of sideband regions. Derive correction factors (2-7%) applied to MC

Exclude regions around J/ $\psi$  and  $\psi$ (2S) masses.

Extract signal as a function of dark scalar mass with fits over sliding intervals (background MC independent)



Signal yields and significances



#### No significant signal, consistent with null hypothesis

Extract limit on the production cross-section and the coupling parameter  $\boldsymbol{\xi}$ 





Probe  $\varphi_L$  lifetime  $c\tau$  ~10 cm below dimuon mass

Significant improvement over previous bounds

The g-2 region is clearly excluded for almost all masses below the ditau threshold!

#### Belle II should be able to further improve

#### What are axion like particles

- Pseudo-goldstone bosons ubiquitous in BSM physics, coupling predominantly to pair of bosons with non-renormalizable coupling constant  $f_a \sim 1/m_a$
- Low-mass ALP can mediate dark sector standard model interactions
- Most searches focus on photon or gluon couplings at low energies as effects from  $W^{\pm}$  coupling are suppressed by  ${\rm G_F}^2$

#### Search for ALP in B $\rightarrow$ Ka, a $\rightarrow \gamma \gamma$ decays

- FCNC are also extremely suppressed in the SM, and they are a perfect testbed to search for ALP emission by W<sup>±</sup> boson
- Search for ALP in B  $\rightarrow$  Ka decays, exploiting b  $\rightarrow$  s transition
- Axion lifetime becomes important at low masses and couplings  $(\tau \sim 1/m_a{}^3g_{aW}{}^2) \rightarrow \text{long-lived axion}$



E. Izaguirre et al., PRL 118 (2017) 111802

Search for prompt diphoton decay of an axion (a) produced in B decays:  $B \rightarrow Ka$ ,  $a \rightarrow \gamma \gamma$ 

#### Analysis strategy

- Combine well-identified K with two photons to form B candidate
- Apply kinematic fit to improve axion mass resolution
- Train 2 BDTs to separate signal from  $e^+e^- \rightarrow q\overline{q}$  (q=u,d,s,c) and  $e^+e^- \rightarrow B\overline{B}$  backgounds
- Analysis optimized for prompt decays discuss displaced case later

#### Continuum BDT



#### **B-Bbar BDT**





Peaking background at  $\pi^0$ , $\eta$ , $\eta'$  masses, broad excess near  $\eta_c$ , background + B  $\rightarrow K\eta_c (\rightarrow \gamma \gamma)$ 

Extract signal as a function of axion mass with fits over sliding intervals (prompt decays, background MC independent)



Fit 476 mass hypotheses, step size taken as signal resolution (8-14 MeV)

Fit includes signal, peaking and continuum background components:

- Signal modeled from signal MC and interpolated between simulated mass points
- Continuum background modelled by first or second order polynomials
- Peaking background modelled from bkg MC

Signal MC resolution validated by data/MC comparisons of  $B\to K\pi^0$  and  $B\to K\eta$ , found to be consistent within 3%

Exclude regions around  $\pi^0$ ,  $\eta$ ,  $\eta'$  masses.

Extract signal as a function of axion mass with fits over sliding intervals (prompt decays, background MC independent)





Signal yields and local significances

Global significances  $<1\sigma$  with trial factor, consistent with background only hypothesis

No significant signal is observed

Analysis sufficiently sensitive in the low mass region to probe couplings for which the ALP lifetime becomes non-negligible

The search is optimized for prompt ALP decays, and it is applied without re-optimization to assess the sensitivity to long lived ALPs

Apply same reconstruction / selection for  $c\tau_a = 1,10,100$  mm for  $m_a < 2.5$  GeV

Signal becomes distorted for longer lifetimes  $\rightarrow$  signal extraction is more difficult and systematic uncertainties larger.





Extract limit on the production cross-section and the coupling parameter  $g_{aW}$ 

#### Prompt decays



### Displaced decays



 $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^{-1})^{-1}$   $(10^$ 

90% CL upper limits on coupling g<sub>aw</sub>

#### Improvement up to two orders of magnitude over a large mass range

### More to come

#### On-going searches for dark sector / dark matter at BABAR

Self-interacting dark matter: if the dark-sector coupling is strong, dark sector bound states (darkonium) could be formed. Such states would leave a striking multi-muon final signature at *BABAR*.

#### PRL 116 (2016) 151801



Dark matter and baryogenesis: Search for signature of a new mechanism of baryogenesis and dark matter production in which both the dark matter relic abundance and the baryon asymmetry arise from neutral B meson oscillations and decays.





We're far from being done....

Dark sectors have emerged as a intriguing possibility to explain dark matter, and more generally to search for light new physics

Low-energy, high-intensity colliders offer an ideal environment to comprehensively probe dark sectors

BABAR has conducted an extensive program to search for dark sector signatures, and set stringent limits on their existence

Recently set world leading constraints on leptophilic dark scalar and axion couplings. And more results are on their way!

There are still amazing possibilities at the GeV-scale, and dedicated programs are underway to explore them.

# **ADDITIONAL MATERIAL**

#### **BDT** input variables

TABLE I: List of variables used as input to the dimuon boosted decision trees.

Ratio of second to zeroth Fox-Wolfram moment of all tracks and neutrals.

Invariant mass of the four track system, assuming the pion (muon) mass for the tracks originating from the tau ( $\phi_L$ ) decays. Invariant mass and transverse momentum of all tracks and neutrals.

Invariant mass squared of the system recoiling against all tracks and neutrals.

Transverse momentum of the system recoiling against all tracks and neutrals.

Number of neutral candidates with an energy greater than 50 MeV.

Invariant masses of the three track systems formed by the  $\phi_L$  and the remaining positively or negatively charged tracks. Momentum of each track from  $\phi_L$  decays.

Angle between the two tracks produced by the tau decay.

Variable indicating if a track has been identified as a muon or an electron by PID algorithm for each track.

TABLE II: List of variables used as input to the dielectron boosted decision trees.

Transverse momentum of the system recoiling against all tracks and neutrals. Energy of the system recoiling against all tracks and neutrals. Number of tracks identified as electron candidates by a PID algorithm applied to each track. Angle between  $\phi_L$  candidate momentum and closest track produced in tau decay. Angle between  $\phi_L$  candidate momentum and farthest track produced in tau decay. Angle of  $\phi_L$  candidate relative to the beam in the center-of-mass frame. Angle between the two tracks produced by the tau decay. Angle between  $\phi_L$  candidate and nearest neutral candidate with E > 50 MeV. Energy of nearest neutral candidate (with E > 50 MeV) to  $\phi_L$  candidate. Total energy in neutral candidates, each of which has an energy greater than 50 MeV. Distance between beamspot and  $\phi_L$  candidate vertex. Uncertainty in the distance between beamspot and  $\phi_L$  candidate decay vertex.  $\phi_L$  candidate vertex significance, defined by the beamspot-vertex distance divided by its uncertainty. Angle between the  $\phi_L$  candidate momentum, and line from beamspot to  $\phi_L$  decay vertex. Distance of closest approach to be among to f  $e^-$  in  $\phi_L$  candidate. Distance of closest approach to be among the  $e^+$  in  $\phi_L$  candidate. Transverse distance between  $\phi_L$  decay vertex and best-fit common origin of  $\tau$  candidates and  $\phi_L$  candidate.  $\chi^2$  of the kinematic fit to the  $\phi_L$  and  $\tau$  candidates constraining their origin to the same production point.  $\chi^2$  of the kinematic fit of the  $\phi_L$  candidate with the constraint that the  $e^+e^-$  pair is produced from a photon conversion in detector material. Dielectron mass for  $\phi_L$  candidate when re-fit with the photon conversion constraint.

#### **BDT** input variables

| $m_{ m ES}$                                                                               | 0.231  |
|-------------------------------------------------------------------------------------------|--------|
| Cosine of sphericity angle                                                                | 0.110  |
| Maximum $K$ PID selector                                                                  | 0.102  |
| Legendre moment of order 2                                                                | 0.0996 |
| Helicity angle of $a$ daughter photon with highest energy                                 | 0.0889 |
| Difference to $\pi^0$ mass                                                                | 0.0882 |
| $\Delta E$ (energy difference between $E_B^*$ and $E_{\text{beam}}^*$ )                   | 0.0721 |
| Maximum of $a$ daughter energies                                                          | 0.0653 |
| Invariant mass of all tracks and neutral clusters except $B^{\pm} \to K^{\pm}a$ candidate | 0.0430 |
| Number of neutral clusters in event                                                       | 0.0420 |
| Kaon helicity angle                                                                       | 0.0416 |
| Difference to $\eta$ mass                                                                 | 0.0095 |
| Difference to $\eta'$ mass                                                                | 0.0076 |

Table 3: Variables used in training the BDT, along with the relative importance when trained with *uds* backgrounds.

Validate efficiency with control samples and derive corresponding corrections

#### Dielectron

Sample of  $K_s \rightarrow \pi^+\pi^-$  in  $\tau$  decays obtained with a similar selection procedure

#### Dimuon

BDT response for data with recoil  $p_T > 2$  GeV to suppress non-modelled components



Data globally well reproduced by MC predictions, corrections between 2-7%

Final mass spectra for each final state and lifetime

Data

e⁺e⁻→BB

🔲 e⁺e →qq

**e<sup>+</sup>e<sup>-</sup>→τ<sup>+</sup>τ** 

 $m_{\mu\mu}$  (GeV)



#### Dimuon (prompt)



