Rare and Exotic H Decays in ATLAS

Tiesheng Dai (The University of Michigan) On behalf of the ATLAS Collaboration

<u>ICPPA-2020</u>

5th International Conference on Particle Physics and Astrophysics

Moscow, Russia; Oct. 5-9 2020

- H→aa
- H→Za
- $H \rightarrow Z_d Z_d$
- LFV searches from H decays
 - ∙ H→e[±]e[∓]

Introduction

• SM is very successful, but some big questions are not explained:

- What are the origins of 95% energy and mass in the universe (dark matter and dark energy)?
- □ What is the source of matter-antimatter asymmetry in our universe?
- \Box Hierarchy problem, why SM m_H << m_{Planck}?
- □ Flavor violation in neutrinos & muon g-2/B decays anomalies → LFV?
- Many theoretical models beyond the Standard Model (BSM) to extend the SM: SUSY, extra Higgs doublets, Composite Higgs ...

• Could SM 125 GeV Higgs be the bridge between SM and BSM?

- ➤ ATLAS model-dependent constrain: B(H→BSM) < ~28% (ATLAS-CONF-2020-027)</p>
- \succ $\Gamma_{\rm H} \simeq 4.1$ MeV, small coupling $\simeq 10^{-2}$ can lead to B(H \rightarrow BSM) $\simeq O(10\%)$
- > Theoretical models allow for LFV Higgs currents: $H \rightarrow e/\mu\tau$ at $B(H \rightarrow \tau \ell) \le O(1\%)$
- Exploring rare and exotic Higgs boson decays → an unique approach at the LHC to search for new physics BSM

Search for Signature of the 2HDM+S Models

From two Higgs doublets φ₁, φ₂, after symmetry breaking =>

- 5 physical states: CP-even (h, H), CP-odd (A), and charged (H[±]) states;
- > $tan(\beta)=v2/v1;$
- α: the mixing angle between the CP-even Higgs bosons

Add a complex scalar singlet

Only couples to the two Higgs complex in the potential without direct Yukawa couplings and couples to SM fermions through its small mixing with two scalar Higgs to avoid destroying SMlike nature of the Higgs

Phys. Reports 516 (2012) 1-102

Models which lead to natural flavour conservation. The superscript *i* is a generation index. By convention, the u_R^i always couple to Φ_2 .

Model	u_R^i	d_R^i	e_R^i
Type I	Φ_2	Φ_2	Φ_2
Lepton-specific	$egin{array}{c} arPsi_2 \ arPsi_2 \ arPsi_2 \end{array}$	$egin{array}{c} m{arphi}_1 \ m{arphi}_2 \end{array}$	$egin{array}{c} arPsi_1 \ arPsi_1 \ arPsi_1 \end{array}$
Flipped	Φ_2	${oldsymbol{\varPhi}}_1$	Φ_2

Phys. Rev. D 90, 075004 (2014)

Type II, tan $\beta = 5$

Exotic Higgs \rightarrow aa Searches

<u>σ</u>H→aa) ATLAS Preliminary Run 1: 15 = 8 TeV, 20.3 fb⁻¹ Run 2: 15 = 13 TeV, 36.1 fb⁻¹ 2HDM+S Type-II, $tan\beta = 2$ λ λ λ expected $\pm 1 \sigma$ observed 95% CI 10 Run 1 H \rightarrow aa \rightarrow µµ $\pi\pi$ arXiv: 1505.01609 Run 1 H \rightarrow aa $\rightarrow \gamma\gamma\gamma\gamma$ arXiv: 1509.05051 101 Run 2 H \rightarrow aa \rightarrow µµµµ arXiv: 1802.03388 107 Run 2 H→ aa→ yyjj 10 arXiv: 1803.11145 107 Run 2 H \rightarrow aa \rightarrow bbbb arXiv: 1806.07355 10 Run 2 H \rightarrow aa \rightarrow bbµµ arXiv: 1807 00539 10^{-6} 10 60 m_a [GeV]

➤ Limits on B(H→aa) assuming a particular 2HDM+S model for couplings by using model independent limits on B(H→2X 2Y);

Still many unexplored regions! > new experimental techniques needed

ATL-PHYS-PUB-2018-045

H→aa→2γ2g:

Phys. Lett. B 782 (2018) 750

- Using the VBF Higgs production to suppress large γγ+multi-jet background
- Events required to have at least 4 jets
- Signal: narrow m_{γγ} peak@m_a, m_{jj} around m_a & m_{γγjj} peak@m_H
- BKGs by data driven method.
- The observed 95%CL upper limit for σxB(H->aa->2γ2g) < 3.1-9.0 pb depending on ma

H→aa→2b2µ:

Phys. Lett. B 790 (2019) 1

❑ Signature: m_{2b+2µ}~m_H, m_{2b}~m_a & narrow m_{2µ} peak@m_a;
❑ A kinematic likelihood fit is used to enforce the m_{2b}=m_{2µ} which also improves the m_{2b+2µ} to match m_H;

- BKGs: DY+jets (estimated from data); tt (MC simulation, normalized to CR)
- Searches: no significant excess above SM predictions → Limits are set by scanning 2µ mass in 2-4 GeV wide bins in range 20 to 60 GeV

H→aa→4b

**	Using VH production for trigge		ng and powerful BKG	3 rejections
		Requirement	Single lepton	Dilepton

Event selections
signal >= 3 b-jets

Requirement	Single lepton	Dilepton
Trigger	single-lepton triggers	
Leptons	1 isolated	2 isolated, opposite-charge
Jets	≥:	3
b-tagged jets	≥ 5	2
Other	$E_{\rm T}^{\rm miss} > 25 \; GeV, \; m_{\rm T}^W > 50 \; GeV$	$V = 85 \; GeV < m_{\ell\ell} < 100 \; GeV$

BKGs: tt+jets & Z+jets processes, estimated using control regions chosen by varying jet and b-tag multiplicities.

Separate signal from BKGs with a BDT classifier using jet kinematic + b-tagging information

No significant deviation from SM predictions → upper limits on the σ_{VH}*B(H→aa→4b) from 3pb to 1.3pb depending on m_a

H→aa→4b (2 Collimated b-jets) arXiv:2005.12236

- ★ ZH production in low mass region 15 ≤ $m_a \le 30$ GeV, where B(a → bb) dominates in many 2HDM+S models
- ◆ Signal has collimated decay products, a novel strategy needed to reconstruct and to identify a→bb decays
 - Merge anti-k jets R=0.4 → 0.8; then using tracks/track-jets with exclusive-k_t method to resolve 2 b-jets
- BKGs: tt+jets & Z+jets processes, estimated in CRs chosen by varying tagging purity and di-lepton mass.
- A BDT classifier based on b-tagging, jet substructure, and kinematic information is used to separate a→bb̄ signal from the single b-jet backgrounds

H→aa→4b (2 Collimated b-jets) arXiv:2005.12236

- Ist LHC result in low-mass 4b final state to use merged b-jets, no deviation from SM predictions;
- ★ Extend the limits down to m_a 15 GeV from 20 GeV and improve the limits on σ_{ZH}xB(H→aa→4b) w.r.t the previous results from m_a from 20 to 24 GeV (for example, a factor 2.5 improvement for m_a=20 GeV)
- Sut only beginning to probe phase space below 100% B(H→aa→4b), current best limit around m_a 20 GeV ~87%.

H→ZX→ℓ⁺ℓ⁻ hadrons

- Search for BSM H→Za, a→hadrons in the mass range 0.5≤m_a≤4 GeV. Due to low mass, final state of pseudo-scalar "a" decay is a boosted single jet;
- Possible sensitivity to $H \rightarrow Z J/\psi$ and $H \rightarrow Z \eta_c$;
- Jet substructure variables used to reconstruct this hadronic pseudo-scalar/meson
 - Individual substructure variables are combined using machine learning techniques;
- Multilayer perceptron (MLP) classifier is used for event selection;
- Dominant background: DY+Jets, estimated using ABCD method in the m_{IIj} and neural network output sidebands.

- The m_{*u*} required from 120 to 135 GeV
- No significant deviation from SM predictions

95% CL observed upper limits: $\sigma_H xB(H \rightarrow Za)$ 17–340 pb from 0.5 to 4 GeV for light spin-0 boson mass hypotheses

$\sigma_H xB(H \rightarrow Z \eta_c)$ 110 pb $\sigma_H xB(H \rightarrow Z J/\psi)$ 100 pb for p. and 1(4) hypotheses resp

for η_c and J/ ψ hypotheses respectively

Not sensitive to the mass regions above 2.8 GeV where $B(H \rightarrow ZX) > 100\%$

arXiv:2004.01678

m_{lliet} [GeV]

$H \rightarrow Z_d Z_d / Z Z_d \rightarrow 4\ell$

JHEP 06 (2018) 166

Lepton Flavor Violation in $H \rightarrow \ell^{\pm} \tau^{\mp}$ Phys. Lett. B 800 (2020) 135069

- □ Signature: Opposite-sign pair of $\ell^{\pm}(e^{\pm}/\mu^{\pm})\tau^{\mp}$, $\tau^{\mp}(\rightarrow e^{\mp}/\mu^{\mp}vv)$ or $\tau_{had}(\rightarrow 1/3$ charged hadrons) + veto extra charged leptons and b-jets
- **Dedicated Categorization for each lepton-flavor:** $e^{\pm}\tau^{\mp}$, $\mu^{\pm}\tau^{\mp}$, 4 SRs
- **BKGs:** Top CR (≥ 1 b-jet, top bkg ~95% purity); $\mathbb{Z} \rightarrow \tau^{\pm} \tau^{\mp}$ CR (35< $p_{T}^{\prime a}$ <45GeV,~60-80% purity)
- **BDT** algorithms used to enhance the signal separation from the background
- **No significant** signal observed in any category, the best-fit BRs are consistent with 0 within 1 σ . Limits are set @ 95% CL on B(H $\rightarrow \ell^{\pm} \tau^{+}$)

6

LFV in H $\rightarrow e^{\pm}\mu^{\mp}$

Phys. Lett. B 801 (2020) 135148

Gignature: exactly 1e and 1 μ with opposite-sign + veto b-jets

BKGs: $Z/\gamma^* \rightarrow \tau^{\pm} \tau^{\mp} \rightarrow e^{\pm} \mu^{\mp} + v's$, top, diboson, W+jets, multijet;

Enhance sensitivity by splitting into 8 categories based on S/B

❑ Simultaneous binned maximum likelihood fit on m_{ℓℓ} across the 8 categories (Gaussian+Crystal Ball for signal; Bernstein polynomial for background)

❑ No evidence of LFV in Higgs to eµ channel

- □ Enhance sensitivities by split into 7 categories based on S/B
- □ Simultaneous binned maximum likelihood fit on m_{ℓ} across the 7 categories (a BW convolved with a Gaussian for signal; an exponential divided by a cubic function for BKG)
- □ The background is dominated by $Z/y^* \rightarrow e^{\pm}e^{\mp}$ as expected;

□ No observed evidence of the $H \rightarrow e^{\pm}e^{\mp}$ decay

B(H→ $e^{\pm}e^{\mp}$) < 3.6x10⁻⁴ (3.5x10⁻⁴ exp.) at 95%CL SM predicts B(H→ $e^{\pm}e^{\mp}$) ≈ 5x10⁻⁹

Conclusion

- Signatures of exotic SM Higgs(125) decays are searched for @13TeV by ATLAS with Run 2 dataset. Several new searches are reported.
- No significant deviation is observed from the SM background predictions
- Still many unexplored regions!
- Multivariate analysis techniques are being used to enhance sensitivity in searches for new physics. New experiment techniques together with full Run 2 data and future Run 3 data will give us many new exciting results and the potential for new physics discovery.

Backup

Higgs Boson Productions and Decays

ATLAS-CONF-2020-027

ATI AS Proliminary		
$I_{s} = 13 \text{ TeV} \cdot 24.5 - 139 \text{ fb}^{-1}$	Stat. 💳 Syst.	I SM
$m_{\rm H} = 125.09 {\rm GeV}, y_{\mu} < 2.5$		
р _{SM} = 87%	Total Stat.	Syst.
ggF үү 👜	1.03 ± 0.11 (± 0.08,	+0.08 -0.07)
ggF ZZ	$0.94 \stackrel{+0.11}{_{-0.10}}(\pm 0.10,$	±0.04) ATLAS SM Higgs cross-section
ggF WW 📥	$1.08 \stackrel{+0.19}{_{-0.18}}(\pm 0.11,$	±0.15) measurements normalized to SM
ggFττ ⊢	1.02 +0.60 (+0.39 , -0.55 (-0.38 ,	
ggF comb.	1.00 ± 0.07 (± 0.05,	± 0.05)
VBF γγ μ μαμ	1.31 ^{+0.26} _{-0.23} (^{+0.19} _{-0.18} ,	+0.18 -0.15)
VBF ZZ	1.25 ^{+0.50} _{-0.41} (^{+0.48} _{-0.40} ,	+0.12 -0.08)
VBF WW	$0.60 \stackrel{+0.36}{_{-0.34}} (\stackrel{+0.29}{_{-0.27}},$	± 0.21)
VBF TT H	$1.15 \begin{array}{c} +0.57 \\ -0.53 \end{array} (\begin{array}{c} +0.42 \\ -0.40 \end{array},$	+0.40 -0.35)
VBF bb	-3.03 $^{+1.67}_{-1.62}$ ($^{+1.63}_{-1.60}$,	→ No significant
VBF comb.	$1.15 \begin{array}{c} +0.18 \\ -0.17 \end{array} (\pm 0.13,$	+0.12 -0.10
VH γγ 💼	$1.32 \begin{array}{c} +0.33 \\ -0.30 \\ -0.29 \\ \end{array},$	deviation from SM
VH ZZ	$1.53 \begin{array}{c} +1.13 \\ -0.92 \end{array} (\begin{array}{c} +1.10 \\ -0.90 \end{array} ,$	+028 -021
VH bb 🚔	$1.02 \stackrel{+0.18}{_{-0.17}}(\pm 0.11,$	-0.12) observed
VH comb.	$1.10 \begin{array}{c} +0.16 \\ -0.15 \\ -0.07 \\ -0$	
ttH+tH γγ	$0.90 \begin{array}{c} +0.27 \\ -0.24 \\ -0.23 \end{array},$	+0.09) -0.09)
	$1.72 \begin{array}{c} +0.56 \\ -0.53 \end{array} (\begin{array}{c} +0.42 \\ -0.40 \end{array},$	+0.38 -0.34)
	$1.20 \begin{array}{c} +1.07 \\ -0.93 \\ -0.74 \end{array}$	+0.70
	$0.79 \begin{array}{c} +0.60 \\ -0.59 \end{array} (\pm 0.29 ,$	+0.52) -0.51)
ttH+tH comb.	$1.10 \begin{array}{c} +0.21 \\ -0.20 \end{array} (\begin{array}{c} +0.16 \\ -0.15 \end{array} ,$	-0.13)
-2 0 2 4	6	8
	Ŭ	•

 $\sigma \times B$ normalized to SM

Early H→aa Limits @95% CL (13 TeV, 36.1 fb-1)

$H \rightarrow e^{\pm} \tau^{\mp}$: m_{MMC} from $e\tau_{\mu}$ (VBF)

Phys. Lett. B 800 (2020) 135069

LFV Searches @8TeV in $H \rightarrow \ell^{\pm} \tau^{\mp}$

Eur. Phys. J. C 77 (2017) 70

l'

B(H→e[±]τ[∓]) < 1.04% (1.21% exp.)

B(H→μ[±]τ[∓]) < 1.43% (1.01% exp.)

