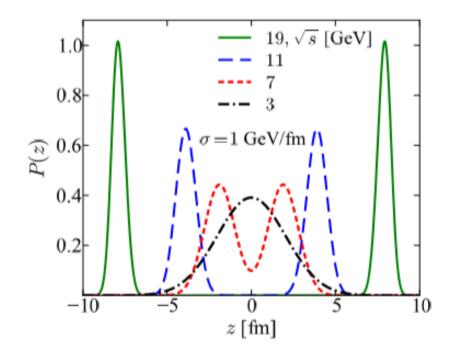
Stopping of protons in pA collisions at SPS and NICA energies in analytical hydrodynamic model and in SMASH event generator

V.Ermakova, G.Feofilov, V.Sandul

Laboratory of Ultra-High Energy Physics, Saint-Petersburg State University

Report by Vera Ermakova at the 5th International Conference on Particle Physics and Astrophysics

https://indico.particle.mephi.ru/event/35/timetable/#20201005.detailed


Thursday, 08.10.2020, 12:15

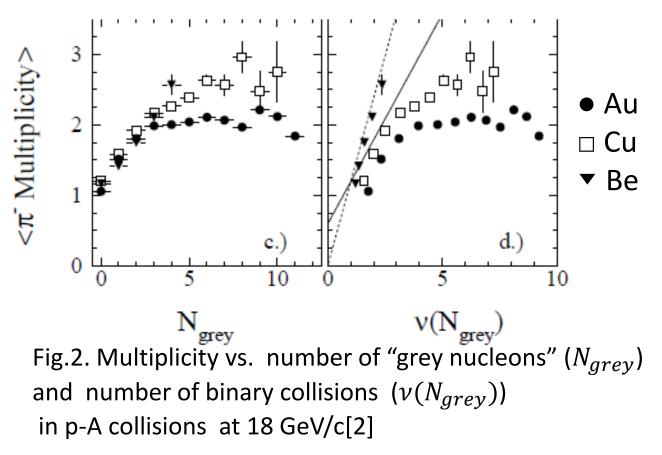
Job is supported by the RFBR grant #18-02-40097

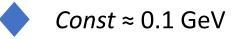
Authors are grateful for V.Kovalenko, V.Vechernin and A.Puchkov for valuable discussions

Motivation of this study

STOPPING

Non-Linear relationship[2]




Fig.1. Stopped nucleons in configuration space [1] [1] Andrzej Bialas, Adam Bzdak, Volker Koch (2016)

[2] I. Chemakin et al. (1999)

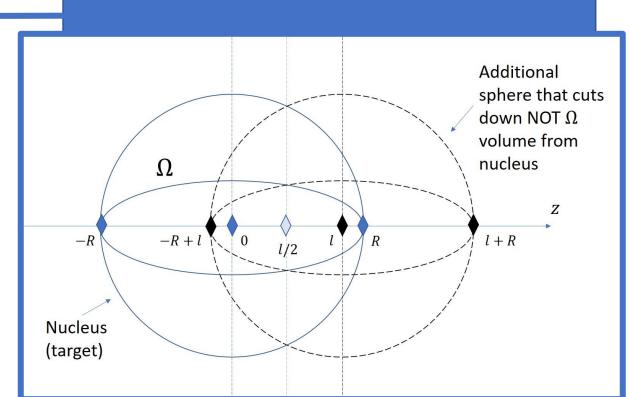
Our hydrodynamic model of proton stopping

R, fm	a, fm	A	V ₀	σ_{inel}^{NN} , $m{fm^2}$	r _p , fm	m_{0p} , GeV	М, GeV	p_{lab} , GeV/c
7.64	0.538	197	0.5	2.85	1.2	1	197.09	18

4

Glauber-like approach:

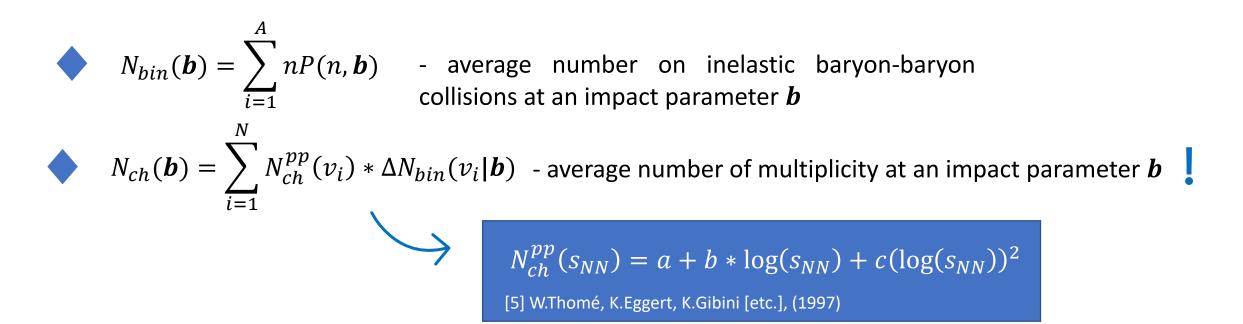
$$T(b) = \iint_{\Omega} \rho(z, \boldsymbol{b}_A) \delta(\boldsymbol{b} - \boldsymbol{b}_A) dz d\boldsymbol{b}_A$$


-thickness function in case of pA-collision (ρ – Woods-Saxon distribution; normalized to unity)

$$\sigma_{inel}^{NN}T(b) = \int_{\Omega} \rho(z, \boldsymbol{b}_A) \delta(\boldsymbol{b} - \boldsymbol{b}_A) dz \, d\boldsymbol{b}_A \sigma_{inel}^{NN}$$

- probability to have ONE baryon-baryon inelastic collision when proton and target situated at an impact parameter \boldsymbol{b} relative to each other

$$P(n,b) = C_A^n \left(\sigma_{inel}^{NN} T(b)\right)^n \left(1 - \sigma_{inel}^{NN} T(b)\right)^{A-n}$$

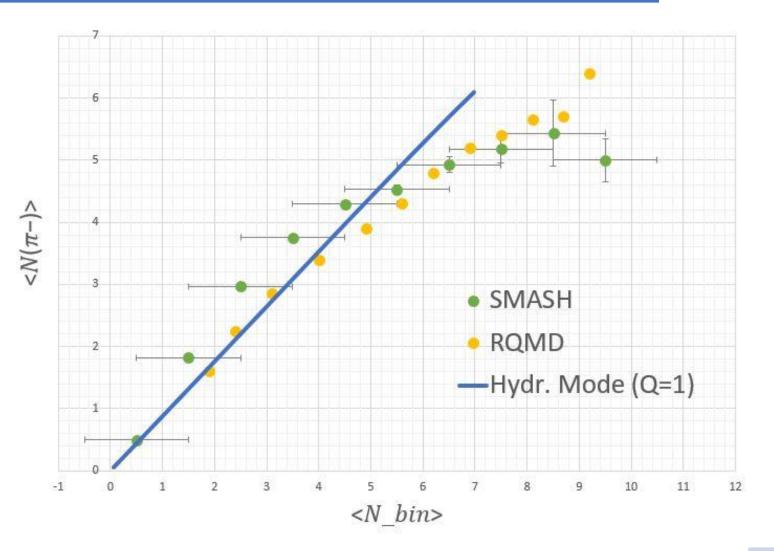

probability to have *n* baryon-baryon inelastic collision when proton and target situated at an impact parameter
 b relative to each other

[4] Cheuk-Yin Wong (1994)

Glauber-like approach:

[4] Cheuk-Yin Wong (1994)

 $\Delta N_{bin}(v_i|\mathbf{b})$ - number of binary collisions that happened while proton was decelerating from v_i to v_{i+1}


In fact, this is an integral that was written in a discrete form for better understanding.

Compare with MC event-generators (full acceptance)

 $N_{\pi^-} = N_{ch}/2;$ 1 In the Hydrodynamic

model of stopping

Fig.2 Mean charged particle yields vs. number of binary collisions in RQMD [2], SMASH and in Hydrodynamic model of stopping p-Au –collision, p_lab = 18 GeV/c

[2] I. Chemakin et al. (1999)

Account of the limited acceptance:

$$N_{ch} = \sum_{i=1}^{N} N_{ch}^{pp}(v_i) * \Delta N_{bin}(v_i | \boldsymbol{b}) * Q^{\sum_{k=1}^{i} \Delta N_{bin}}(v_k | \boldsymbol{b}) - \text{average multiplicity considering acceptance}$$

Q – probability to detect multiplicity that we got from ONE inelastic binary collision. Q^{y} - probability to detect multiplicity that we got from y inelastic binary collisions.

 $\Delta N_{bin}(v_i|\mathbf{b})$ - number of binary collisions that happened while proton was decelerating from v_k to v_{k+1}

In fact, this is an integral that was written in a discrete form for better understanding.

Account of the limited acceptance:

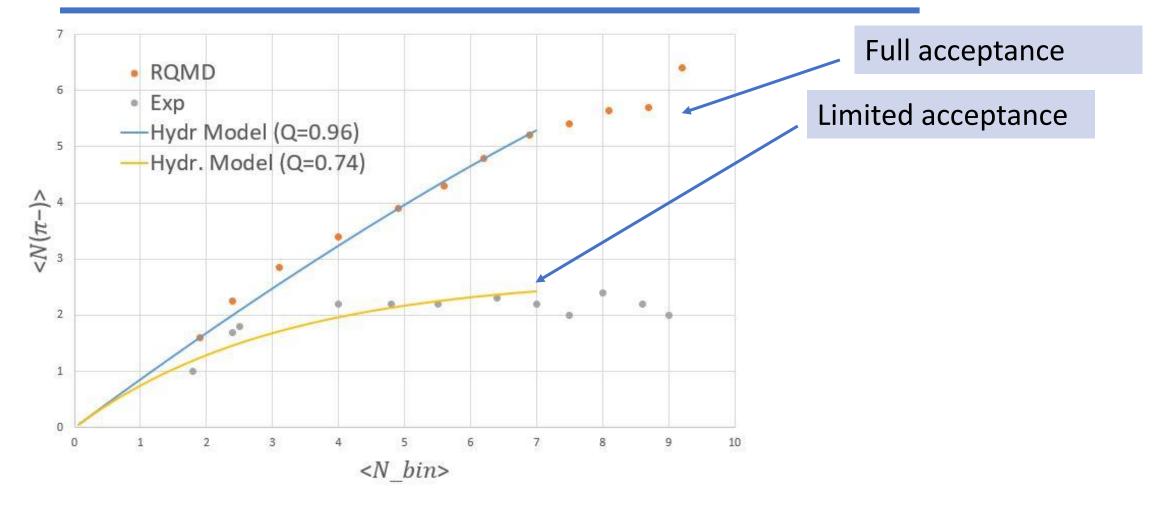
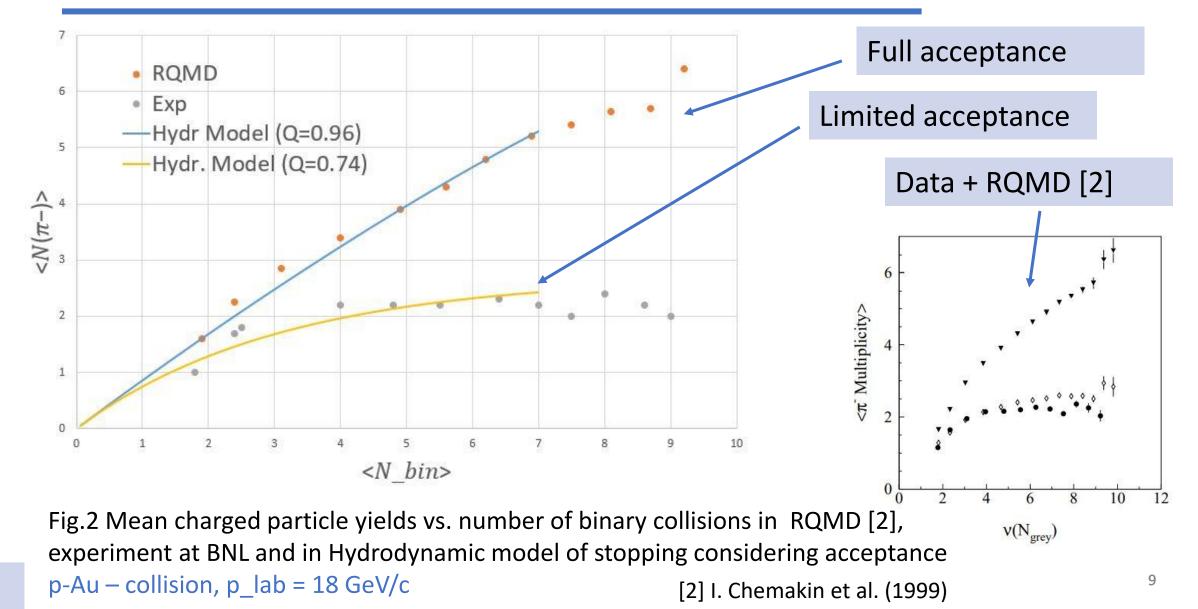



Fig.2 Mean charged particle yields vs. number of binary collisions in RQMD [2], experiment at BNL and in Hydrodynamic model of stopping considering acceptance p-Au - collision, $p_{lab} = 18 \text{ GeV/c}$ [2] I. Chemakin et al. (1999)

Account of the limited acceptance:

Conclusion

A new hydrodynamic model of nucleon stopping that describes the deceleration of a proton in a nucleus and based on hydrodynamics is proposed. No fitting coefficients are required.

The linear dependences for the p-A collisions were obtained. This is in line with experiment on p-Au collisions at $p_{lab} = 18 \text{ GeV/c}$ in the first approximation. Similar dependence is demonstrated by the MC models RQMD and SMASH.

The non-linear behavior of multiplicity vs. number of binary collisions -description is found to be a result of limited acceptance of the experimental data.

Results of these studies of nucleon stopping are important for the future analysis of centrality selection in p-A and A-A collisions at NICA experiments.

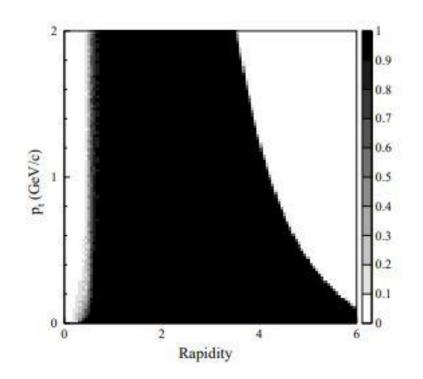
Bibliography

 [1] Stopped nucleons in configuration space (2016) / Andrzej Bialas, Adam Bzdak, Volker Koch // Acta Phys.
 Pol. B 49. №2. P. 103. doi:10.5506/APhysPolB.49.103 [4] Cheuk-Yin Wong (1994) / Glauber Model of Nucleus-Nucleus Collision // Intoduction to High-Energy Heavy-Ion Collisions. Singapore: World Scientific Publishing Cu. Pte. Ltd.

[2] I. Chemakin et al., Phys. Rev. C 60, 024902;
 https://doi.org/10.1103/PhysRevC.60.024902;
 arXiv:nucl-ex/9902009

[5] Charged particle multiplicity distributions in pp collisions at ISR energies (1997) / W.Thomé,
K.Eggert, K.Gibini [etc.] // Nuclear Physics B129.
P. 365-389. doi:10.1016/0550-3213(77)90122-5

[3] L. D. Landau, E. M. Lifshitz (1986) / Fluid
 Mechanics // Theoretical Phisics: V.6 3rd Ed. Moscow:
 "Nauka"


[6] Particle production and equilibrium properties within a new hadron transport approach for heavyion collisions (2017) / J. Weil, V. Steinberg, J. Staudenmaier [etc] // Phys. Rev. C 94, 054906. doi:10.1103/PhysRevC.94.054905 Back Up

SMASH - Simulating Many Accelerated Strongly-Interacting Hadrons Based on the relativistic Boltzmann equation :

$$p^{\mu}\partial_{\mu}f_i(x,p) + m_i F^{\alpha}\partial^p_{\alpha}f_i(x,p) = C^i_{coll}$$

At each step along the time axis, for each particle, its trajectory is calculated using the Boltzmann equation.

Back Up

Acceptance in BNL experiment

[2] I. Chemakin et al. (1999)