New Small Wheels for the ATLAS Muon Spectrometer

5th ICPPA, 5-9 October 2020

Maria Perganti¹, on behalf of the ATLAS Muon Collaboration

ATLAS New Small Wheel

W large sec sTGC wedg sTGC wedge

- 2 gaseous detector technologies: MM & sTGC.
- 8 Small sectors / 8 Large sectors
- (4 wedges/sector, 4 layers/wedge).
- 8 layers of sTGC surround 8 layers of MM.

The HL-LHC luminosity (up to 7.5 x 10³⁴ cm⁻²s⁻¹) requires major upgrades by the experiments to withstand the increased particle rate. The New Small Wheel (NSW) will replace the current Small Wheel at the most forward region of its muon spectrometer $1.3 < |\eta| < 2.7$.

The NSW consists of Micromegas detectors and small-strip Thin Gap chambers with both tracking and triggering capabilities. The integration and commissioning of the NSW is currently in a full swing at CERN and is expected to be installed in ATLAS during 2021.

Muon system upgrade goals:

- Improve the tracking efficiency in the high rate environment.
- Reduce fake triggers from background hits. Currently, intolerable end-cap muon trigger rate with 90% fake muon triggers.

4 L1DDC/Layer 1 & 4 (16 4 LVDB/Layer 1 & 4 (16 Low Voltage Level-1 data driver cards) Distribution Boards L1DDC 16 MMFE8/Layer (128 Micro-4 ADDC/Layer 1 & 4 (16 Address in Real 1 L1DDC/Laye Megas Front-End Boards) Time Data Driver Cards) (8 boards New Small Wheel trigger and data acquisition dataflow Strip Noise and Connectivity Micromegas Up to 8 FE 1 LVDB/Wedge USA15 (2/sector Trigge ()Ū Sector logic Front end boards Trigger + Cooling Pipe processo ROD Readout TTC 6 FEBs/Layer (24 boards) SCA Config FELIX networ VMM channel aliveness is Baselines taken to check the noise ADDC Pulser run to cross check the Pulser run to check Trigge DCS Nominal PD0 of front-end electronics. Noise rms number of dead channels electronics operation, i.e. increasing with strip length. with those from baselines

Electronics Integration & Validation

validated with test pulse readout.

MICRO MEsh GAseous Structure (MM) tracking detector

The MM is a type of parallel plate gaseous detector. Thanks to the metal mesh separating drift and amplifycation regions, MM is able to track particles with a pre-

cision of order 100 µm/detection gap while withstanding a particle rate around 20 kHz/cm². Free drift electrons arisen from gas ionization, move in the electric field inducing signal on the readout strips by activating avalanche mechanism.

The MMs will be primarily used for the NSW tracking.

Small Strip Thin Gap Chamber (sTGC) trigger detector

A gaseous detector with an anode plane, sandwiched between two parallel cathode planes. One cathode plane has readout

strips and the other one has the pads for triggering. Signal pick-up copper pads and strips are on the back side of the two isolation layers, respectively. The sTGC will be primarily used for the NSW trigger (resolution ~1 mrad).

High Voltage Validation

The MM HV values of all the 128 HV-sections of a MM DW are tested and decided:

and perform an overview of

the electronics

- Operating gas mixture: Ar + 7%CO₂. However, studies on alternate gas mixture is ongoing.
- Operating voltages: Drift cathode at -300 V, Micro-mesh at grounded, Readout at +570 V.
- 16x8 = 128 HV-sections in a full Micromegas double wedge.

• A moderately unstable HV-section still can be operated at a lower value on a separate HV line (which is referred to as the hospital line). A very unstable HV section is turned off during HVvalidation.

A possible HV-map of two layers.

sTGC HV validation: keeping the nominal voltage for 1 Month with proper gas mixture (nPentane/CO2 (45% / 55%)) - No sparks should be detected, no trip.

Challenges of the project

- New electronics system: Separate sTGC & MM new readout architecture, several different frontend/backend electronics that have to provide precise segments in the trigger and precision hits for muon reconstruction. The reduction of noise levels (noise rate, spark rate) is a main electronic challenge.
- New TDAQ: Up-to-date using Felix² and Swrod³. System is still in developing mode. Focusing on data format and running functionalities. It needs initialization, recovery, integration with ATLAS/TTC system.
- MM HV Configuration: Achievement of stability of 16 HV section/layer is a challenge for every sector.

New data-routing device that distributes trigger signals and configuration data to the MMFE8s. Software Read-Out Driver interface with FELIX, process the incoming data before sending them to the High Level Trigger.

1.National Technical University of Athens

Cosmic studies at the

construction sites of the sTGCs

Επιχειρησιακό Πρόγραμμα Ανάπτυξη Ανθρώπινου Δυναμικού Εκπαίδευση και Διά Βίου Μάθηση Ειδική Υπηρεσία Διαχείρισης ηση της Ελλάδας και της Ει

🥩 ΕΣΠΑ iii iii 2014-20

NSW performance validation

Look at the basic detector parameters, i.e. charge, cluster size, efficiency.

Meant to validate that the system works within the specifications.

92.3 94.8 92.1 90.1 94 84.9 94.7 93.3 93.7 93.5 93.4 92.6 95.7 9

4

pdo (charge), tdo (time).

2 pairs of scintillators trigger with frequency at 120Hz, covering partially the detectors along φ coordinate.

Mean MM cluster charge vs the incident angle θ taken from the track reconstruction using the other layers of the double-wedge.

ATLAS NSW Interna

with cosmic muons

Eff. LM1 [%](sm) Eff. LM2 [%](sm

Percent low occ. (no. channels

Micromegas efficiency vs amplification voltage (HV) for chambers tested with cosmic muons.

MM cluster width (number of hits+holes per cluster) vs the incident angle θ taken from the track reconstruction using the other layers of the double-wedge for Small chambers tested