Standard Model measurements by ATLAS and CMS

Arantxa Ruiz Martínez (IFIC Valencia) on behalf of the ATLAS and CMS Collaborations

CMS

5th International Conference on Particle Physics and Astrophysics, 5-9 October 2020

Outline

Many new Run 2 measurements released by ATLAS and CMS:

- Transverse energy-energy correlations and α_s extraction
- Diphoton production
- Collinear Z boson emission
- Lepton Flavour Universality test
- $^{\circ}$ Search for $W \rightarrow \pi \gamma$ in $t\bar{t}$ events
- Observation of photon-induced WW and dilepton production
- Electroweak Zjj differential cross sections
- Polarization in electroweak W[±] W[±] jj production
- Observation of electroweak Wγjj, WZjj and ZZjj production
- Evidence of electroweak Z yjj production
- Observation of the production of three massive gauge bosons VVV
- Inclusive 4ℓ differential cross sections

Transverse energy-energy correlations and α_s extraction

ATLAS-CONF-2020-025

- $\circ~$ Event shape observables can be used to precisely test pQCD calculations and to extract the value of $\alpha_{\rm s}$
- Transverse energy-energy correlations (TEEC) and their associated azimuthal asymmetries (ATEEC) used for hadron collider experiments

$$\frac{1}{\sigma} \frac{\mathrm{d}\Sigma}{\mathrm{d}\cos\phi} \equiv \frac{1}{\sigma} \sum_{ij} \int \frac{\mathrm{d}\sigma}{\mathrm{d}x_{\mathrm{T}i} \mathrm{d}x_{\mathrm{T}j} \mathrm{d}\cos\phi} x_{\mathrm{T}i} x_{\mathrm{T}j} \mathrm{d}x_{\mathrm{T}i} \mathrm{d}x_{\mathrm{T}j} = \frac{1}{N} \sum_{A=1}^{N} \sum_{ij} \frac{E_{\mathrm{T}i}^{A} E_{\mathrm{T}j}^{A}}{\left(\sum_{k} E_{\mathrm{T}k}^{A}\right)^{2}} \delta(\cos\phi - \cos\phi_{ij})$$

where *i* and *j* run over all jets in the event, E_T is the sum of transverse energies of all jets, $x_i = E_{T_i}/E_T$ and ϕ is the angle between jets in the transverse plane

1	$d\Sigma^{asym}$	_ 1	dΣ	1	dΣ	
$\overline{\sigma}$	$d\cos\phi$	$\overline{\sigma}$	$d\cos\phi$	$\phi^{-}\sigma$	$d\cos\phi$	$ _{\pi-\phi}$

Transverse energy-energy correlations and α_s extraction

ATLAS-CONF-2020-025

- $\circ~$ Data binned in ten intervals of $H_{\rm T2}$ (scalar $p_{\rm T}$ sum of the two leading jets) to study the scale dependence of the TEEC and ATEEC observables
- $\circ \alpha_s$ determined from fits to the TEEC and ATEEC functions

A. Ruiz (IFIC Valencia)

ICPPA-2020, 5 October 2020 4

Measurement of diphoton production cross section

ATLAS-CONF-2020-024

• The main challenge and source of uncertainty in the experimental side is the estimation of the background from non-prompt photons in jet events

 The measured integrated cross section compatible with the NNLO predictions and multileg-merged calculations

Comparisons to the MC predictions:

• Sherpa [SciPost Phys. 7 (2019) 034]

Comparisons to the fixed-order predictions:

- Fixed-order NNLO with NNLOJET [PoS RADCOR2017 (2018) 074]
- Fixed-order NLO with Diphox [Eur. Phys. J. C16 (2000) 311]

Measurement of diphoton production cross section

ATLAS-CONF-2020-024

 Agreement between measured differential cross sections and the most accurate predictions is generally good where expected

6

Measurement of diphoton production cross section

ATLAS-CONF-2020-024

 Agreement between measured differential cross sections and the most accurate predictions is generally good where expected

Collinear Z boson emission

CMS-PAS-SMP-19-010

BR($W \rightarrow \tau \nu$)/BR($W \rightarrow \mu \nu$) in e- $\mu t\bar{t}$ events

arXiv:2007.14040 [hep-ex]

- Testing Lepton-Flavour Universality (LFU)
- Probing universality of *W* coupling to charged leptons: $R(\tau/\mu) = BR(W \rightarrow \tau v_{\tau})/BR(W \rightarrow \mu v_{\mu})$
- Using dileptonic *t* vents as a sample of probe *W* bosons, tag(*e*, *µ*)-and-probe(*µ*)
- In agreement with SM expectation:

 $\mathsf{R}(\tau/\mu) = 0.992 \pm 0.013$

- Flavour anomalies observed at LHCb: [JHEP 08 (2017) 055]
 [PRL 122 (2019) 191801]
- Long-standing 2.7σ deviation from LEP [Phys. Rept. 532 119]:

 $\mathsf{R}(\tau/\mu) = 1.070 \pm 0.026$

 Factor two in precision compared to LEP, best precision achieved up to now

Search for $W \rightarrow \pi \gamma$ in $t\bar{t}$ events

CMS-PAS-SMP-20-008

- First LHC search of the rare exclusive hadronic decay $W \rightarrow \pi \gamma$: isolated photon plus isolated track compatible with a pion (dedicated variable developed)
- Select $t\bar{t}$ events with $W \rightarrow \ell v$ ($\ell = \mu, e$), signal discrimination with a Boosted Decision Tree (BDT)
- Upper limits extracted from a fit to the $m_{\pi\gamma}$ distribution: $B(W \rightarrow \pi\gamma) < 1.51 \times 10^{-5}$ (theoretical calculations in the range $10^{-9} - 10^{-6}$)

Observation of photon-induced WW production

ATLAS-CONF-2020-038

- $\circ~$ Test of the electroweak (EW) sector of the Standard Model
 - Direct access to triple γWW and quartic $\gamma \gamma WW$ interactions, $O(\alpha_{EM}^2)$

Protons radiate ISR photons and stay intact or dissociate

Run 1 evidence of this process has turned into observation in Run 2:

ATLAS [Phys. Rev. D 94 (2016) 032011] and CMS [JHEP 08 (2016) 119]

Observation of photon-induced WW production

ATLAS-CONF-2020-038

A $\gamma\gamma \rightarrow W^+W^- \rightarrow \mu^+ v_\mu e^- v_e$ candidate event recorded in *pp* collisions in 2018

Observation of photon-induced WW production

ATLAS-CONF-2020-038

	Signal region		Control regions	
$n_{\rm trk}$	$n_{\rm trk}$	= 0	$1 \le n_{trl}$	$_{k} \leq 4$
$p_T^{e\mu}$	> 30 GeV	< 30 GeV	> 30 GeV	$< 30 { m ~GeV}$
$\gamma \gamma \rightarrow WW$	174 ± 20	45 ± 6	95 ± 19	24 ± 5
$\gamma\gamma \rightarrow \ell\ell$	5.5 ± 0.3	39.6 ± 1.9	5.6 ± 1.2	32 ± 7
Drell-Yan	4.5 ± 0.9	280 ± 40	106 ± 19	4700 ± 400
$qq \rightarrow WW$	101 ± 17	55 ± 10	1700 ± 270	970 ± 150
Non-prompt	14 ± 14	36 ± 35	220 ± 220	500 ± 400
Other qq initiated	7.1 ± 1.7	1.9 ± 0.4	311 ± 76	81 ± 15
Total	305 ± 18	459 ± 19	2460 ± 60	6320 ± 130
Data	307	449	2458	6332

Interaction vertex:

$$z_{\rm vtx}^{\ell\ell} = \frac{z_{\ell_1} \sin^2 \theta_{\ell_1} + z_{\ell_2} \sin^2 \theta_{\ell_2}}{\sin^2 \theta_{\ell_1} + \sin^2 \theta_{\ell_2}}$$

 $n_{
m trk}$: number of tracks in a window $\Delta z = \pm 1$ mm around $z_{
m vrkx}^{\ell\ell}$ excluding the tracks from leptons

Observation with 8.4 σ (6.7 σ exp)

Observation of photon-induced dilepton production

arXiv:2009.14537 [hep-ex]

- $^{\circ}$ 2017 dataset with the ATLAS Forward Proton (AFP) detector inserted, 14.6 fb⁻¹
- Observation with significances of 9.7 σ (13 σ) for ee ($\mu\mu$)
- The first cross section measurement using proton tagging at the LHC

Electroweak Zjj differential cross sections

arXiv:2006.15458 [hep-ex]

- $\circ~$ Sensitive to the Vector Boson Fusion (VBF) production mechanism
- Measured data are sufficiently precise to distinguish between different state-of-the-art theoretical predictions calculated using POWHEG+PYTHIA8, HERWIG7+VBFNLO and SHERPA 2.2

Electroweak Zjj differential cross sections

arXiv:2006.15458 [hep-ex]

Electroweak Zjj differential cross sections

arXiv:2006.15458 [hep-ex]

Electroweak *WZjj* and $W^{\pm}W^{\pm}jj$ production

Phys. Lett. B 809 (2020) 135710

Vector Boson Scattering (VBS) contributing to the EW-induced production:

• QCD-induced production:

- Observation of electroweak production of WZ at 6.8 σ (5.3 σ exp) significance
- Differential cross sections measured as a function of several observables
- Constrain anomalous Quartic Gauge Couplings (aQGCs) in the EFT framework

Electroweak WZjj and $W^{\pm}W^{\pm}jj$ production

Phys. Lett. B 809 (2020) 135710

2500 3000 m_{ii} [GeV]

1500 m^{WZ} [GeV]

Polarization in electroweak $W^{\pm}W^{\pm}jj$ production

arXiv:2009.09429 [hep-ex]

- Deviations in VBS production of longitudinally polarized gauge bosons predicted in many BSM models
- ° First measurements of production cross sections for polarized $W^{\pm}W^{\pm}$
- Two different BDTs used to separate either the $W_L^{\pm}W_L^{\pm}$ and $W_X^{\pm}W_T^{\pm}$ processes or the $W_L^{\pm}W_X^{\pm}$ and $W_T^{\pm}W_T^{\pm}$ processes
- EW W[±]W[±] production with at least one longitudinally polarized W boson measured at 2.3σ (3.1σ exp) significance

Evidence/Observation of electroweak ZZjj production

ATLAS: arXiv:2004.10612 [hep-ex], CMS: arXiv:2008.07013 [hep-ex]

Typical diagrams for the production of ZZjj: EW VBS diagrams

Typical diagrams for the production of ZZjj: QCD diagrams

Evidence/Observation of electroweak ZZjj production

ATLAS: arXiv:2004.10612 [hep-ex], CMS: arXiv:2008.07013 [hep-ex]

- 0 ZZjj analysis performed exploiting leptonic decays:
 - ATLAS: *llllij* and *llvvjj* channels
 - CMS: *lllljj* channel
- All VVjj channels have been observed now 0
- ATLAS observation: 5.5 σ (4.3 σ), CMS evidence: 4.0 σ (3.5 σ)

ATLAS (s = 13 TeV, 139 fb

-0.8 -0.6 -0.4 -0.2 0

Signal Region

eevvii

20

ATLAS *llljj*

ATLAS *llvvii* Multivariate discriminant

Uncertainty

0.2 0.4 0.6 0.8

MD

CMS *lllljj*

Matrix element discriminant

Observation of electroweak Wyjj production

arXiv:2008.10521 [hep-ex]

 VBS processes comprise an independent and complementary method to study EW symmetry breaking

- $^{\circ}$ Observed (expected) significance is 4.9 σ (4.6 σ)
- $^{\circ}~$ Observed (expected) significance is 5.3 σ (4.8 σ) after combining with 8 TeV data

Evidence of electroweak Zyjj production

JHEP 06 (2020) 076

- $Z\gamma jj$ measurement with 36 fb⁻¹: 3.9 σ (5.2 σ exp) significance (4.7 σ obtained if combined with 8 TeV data)
- Signal extracted from a m_{ii} and $\Delta \eta_{ii}$ two-dimensional fit
- Fiducial cross-section in agreement with the SM
- Constraints on aQGCs

Observation of the production of three massive gauge bosons

arXiv:2006.11191 [hep-ex]

- First observation of the combined production of three massive gauge bosons VVV with V = W, Z
- Searches for individual *WWW*, *WWZ*, *WZZ*, and *ZZZ* production performed in final states with 3, 4, 5, and 6 leptons (*e* or μ)
- $^{\circ}~$ Observed (expected) significance of the combined VVV production is 5.7 $\sigma~(5.9\sigma)$

Inclusive four-lepton differential cross sections

ATLAS-CONF-2020-042

- The 4 ℓ final state has contributions from interesting Standard Model processes: single Z boson production, Higgs boson production and on-shell ZZ production
- Sensitive to New Physics / BSM contributions: modifications to the couplings of the Higgs or gauge boson, possible four-fermion interactions, models with leptonic decays of Z bosons or new particles

Conclusions

- Many new results with the latest and greatest Run 2 dataset by ATLAS and CMS, legacy Run 2 measurements being finalized
- Comprehensive tests of the Standard Model over 15 orders of magnitude in cross section and going more differential, results compared to theory predictions from state-of-the-art MC and fixed-order calculations.
- LFU test in agreement with SM with the best precision achieved up to now
- $\circ~$ First LHC search of the rare exclusive hadronic decay $W \to \pi \gamma$
- First measurements of production cross sections for polarized $W^{\pm}W^{\pm}$
- Evidence/Observation of rare processes:
 - Observation of photon-induced processes: $\gamma\gamma \rightarrow WW$ and $\gamma\gamma \rightarrow \ell\ell$
 - Observation of electroweak production of Wγjj, WZjj and ZZjj
 - Evidence of electroweak production of Zyjj
 - Observation of production of VVV (with V = W, Z)
- More information:

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/StandardModelPublicResults https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsSMP