

ICPPA-2020

Experimental results on EFT interpretations of SM and Higgs boson measurements

Ana Cueto (L.A.P.P.) on behalf of the ATLAS and CMS collaborations

SM measurements

So far, no hints of BSM physics from direct searches at the LHC ...

... but a wide plothora of SM precision measurements available

The Standard Model Effective Field Theory

- SMEFT allows a systematic interpretation of large data sets in terms of new physics (NP)
 - It does not assume that the theory is valid at arbitrarily high energies.
- * Extends the SM Lagrangian by adding new operators of d>4 suppressed by the NP energy scale, $1/\Lambda^{d-4}$
 - Valid for $\Lambda >>$ vev. Keeps same fields and symmetries as the SM

$$\mathscr{L}_{SMEFT} = \mathscr{L}_{SM} + \sum_{i} \frac{c_i^{d=6}}{\Lambda^2} \mathcal{O}^{d=6} + \sum_{i} \frac{c_i^{d=8}}{\Lambda^4} \mathcal{O}^{d=8}$$

- Only c_i / Λ^{d-4} is measurable
- Several operator bases can be worked out, different conventions in use
- Constrain EFT coefficients → constrain large classes of UV theories

Higher orders in SMEFT and other concepts

- * Naive expectation: dim-6-interf > dim-6 quadratic ~ dim-8 interference
 - Not always true (e.g. if interference is suppressed)
 - > Studies of quadratic terms can be a test of the EFT convergence
- * Typically, a LO SMEFT is used
 - But SMEFT compatible with NLO corrections, unlike kappa-framework or anomalous couplings.
- * No clear recommendations on uncertainties for EFT predictions.
- * In differential measurements, effect of operators usually growing with $(E/\Lambda)^{d-4}$
 - Measure in tails of distributions
- ♦ Growth of amplitude with energy can violate unitarity ⇒EFT no longer valid

From aTGCs to EFTs

- * aTGCs controlled by 3 CP-conserving parameters { δ_1^V , κ_V , λ_V }. Additional terms needed for neutral gauge couplings and aQGCs. Lagrangian approach $-ig_{WWV}[g_1^V(W^+_{\mu\nu}W^{-\mu}V^{\nu} - W^-_{\mu\nu}W^{+\mu}V^{\nu}) + \kappa_V W^+_{\mu}W^-_{\nu}V^{\mu\nu}] - i\frac{\lambda_V}{m_{\mu\nu}^2}V^{\mu\nu}W^+_{\nu}W^-_{\mu\mu}V^-_{\mu\nu}$
- * Can add more terms adding derivatives (with additional 1/Mw scaling).
- * Not necessarily gauge invariant
- * Leads to unitarity violation \rightarrow Use e.g. form factors
- * EFT operators in dimension-6 for TGCs

$$\begin{split} \mathcal{O}_{B} &= (D_{\mu}H^{\dagger})B^{\mu\nu}D_{\nu}H & \text{Others in Backup} \\ \mathcal{O}_{W} &= (D_{\mu}H)^{\dagger}W^{\mu\nu}D_{\nu}H & \mathcal{O}_{\tilde{W}} &= (D_{\mu}H)^{\dagger}\tilde{W}^{\mu\nu}D_{\nu}H \\ \mathcal{O}_{WWW} &= \text{Tr}[W_{\mu\nu}W^{\nu}_{\rho}W^{\rho\nu}] & \mathcal{O}_{W\tilde{W}W} &= \text{Tr}[W_{\mu\nu}W^{\nu}_{\rho}\tilde{W}^{\rho\nu}] \end{split}$$

 $g_1^Z = 1 + c_W \frac{m_Z^2}{\Lambda^2}$ $\kappa_{\gamma} = 1 + (c_w + c_B) \frac{m_W^2}{2\Lambda^2}$

* In EFT many other operators affect vector-boson measurements, usually not considered since they were well constrained at LEP (this is basis dependent)

arXiv:1907.08354

CMS:WW and WZ

- Dedicated measurement for constraining anomalous
 WWγ and WWZ couplings
- * W decaying leptonically and Z or W hadronically (fat jet) $\frac{1}{2}$
 - Semi-leptonic channels offer a good balance between $\frac{1}{2}$ 10 purity and efficiency
 - Reduction of W+jets with jet substructure techniques
- Limits from 2D unbinned LH fits to (m_{SD},m_{WV})
- c_{WWW} and c_W similar impact in WW and WZ, c_B much greater in WW region.
 - Little separation power between cwww and cw
- Improvement wrt. 8 TeV results

Parametrization	aTGC	Expected limit	Observed limit	Observed best-fit	8 TeV observed lim	
	$c_{\rm WWW}/\Lambda^2~({\rm TeV}^{-2})$	[-1.44, 1.47]	[-1.58, 1.59]	-0.26	[-2.7, 2.7]	-1
EFT	$c_{\rm W}/\Lambda^2~({\rm TeV}^{-2})$	[-2.45, 2.08]	[-2.00, 2.65]	1.21	[-2.0, 5.7]	
	$c_{\rm B}/\Lambda^2~({\rm TeV}^{-2})$	[-8.38, 8.06]	[-8.78, 8.54]	1.07	[-14, 17]	
	λ_Z	[-0.0060, 0.0061]	[-0.0065, 0.0066]	-0.0010	[-0.011, 0.011]	
LEP	Δg_1^Z	[-0.0070, 0.0061]	[-0.0061, 0.0074]	0.0027	[-0.009, 0.024]	
	$\Delta \kappa_Z$	[-0.0074, 0.0078]	[-0.0079, 0.0082]	-0.0010	[-0.018, 0.013]	

ATLAS: WW

Operator	95% CL (linear and quadratic terms)	95% CL (linear terms only)
c_{WWW}/Λ^2	$[-3.4 \text{ TeV}^{-2}, 3.3 \text{ TeV}^{-2}]$	$[-179 \text{ TeV}^{-2}, -17 \text{ TeV}^{-2}]$
c_W/Λ^2	$[-7.4 \text{ TeV}^{-2}, 4.1 \text{ TeV}^{-2}]$	$[-13.1 \text{ TeV}^{-2}, 7.1 \text{ TeV}^{-2}]$
c_B/Λ^2	$[-21 \text{ TeV}^{-2}, 18 \text{ TeV}^{-2}]$	$[-104 \text{ TeV}^{-2}, 101 \text{ TeV}^{-2}]$

- WW→evµv. More background than WZ, need to suppress ttbar with jet veto
- Limits from unfolded leading p_T¹ differential cross section
 - BSM terms behave as SM in the unfolding
- * Large EW corrections in the p_T¹ tail
- * Less sensitive to O_W, O_{WWW} than WZ
- Studied relevance of quadratic terms
 - Relevant especially for O_{WWW}

Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV ⁻²]
c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]
c_W/Λ^2	[-7.4, 4.1]	[-6.4, 5.1]
c_B/Λ^2	[-21,18]	[-18,17]
$c_{\tilde{W}WW}/\Lambda^2$	[-1.6, 1.6]	[-1.5, 1.5]
$c_{ ilde W}/\Lambda^2$	[-76 , 76]	[-91,91]

CMS: WW

- Two methodologies (sequential cuts and random forests) studied for background estimation.
- * WW \rightarrow l+vl-v with 0 or 1-jet
- Limits from m_{eµ} templates (not sensitive to higherorder QCD effects or jet energy scale). BSM terms behave as SM in the unfolding
- * Only different flavour event sample
 - Same flavour has larger contamination from DY
 - m_{eµ}>100 GeV to reduce Higgs contribution
- * Almost a factor 2 better more stringent than ATLAS
 - Due to the usage of 1-jet measurement

Coefficients	68% confid	ence interval	95% confidence interval		
$({\rm TeV}^{-2})$	expected	observed	expected	observed	
$c_{ m WWW}/\Lambda^2$	[-1.8, 1.8]	[-0.93, 0.99]	[-2.7, 2.7]	[-1.8, 1.8]	
$c_{\rm W}/\Lambda^2$	[-3.7, 2.7]	[-2.0, 1.3]	[-5.3, 4.2]	[-3.6, 2.8]	
c_B/Λ^2	[-9.4, 8.4]	[-5.1, 4.3]	[-14, 13]	[-9.4, 8.5]	

ATLAS: EW Zjj

arXiv:2006.15458

- * Differential cross sections for EW Zjj production (Z to ee or $\mu\mu$) for the first time. Full Run 2 analysis
- * Shape and normalisation of strong Zjj from data-driven method (significant modelling unc. in the predictions)
- Using Warsaw basis as implemented in <u>SMEFTsim</u> package
- * Also exploits parity odd observables, $\Delta \varphi_{jj}$, for the constraint of CP-even and CP-odd operators
- * Checked importance of quadratic terms
 - Constraints mainly from interference (test of EFT convergence), no unitarity violation issues.

Wilson	Includes	95% confidence	95% confidence interval [TeV ⁻²]	
coefficient	$ \mathcal{M}_{ m d6} ^2$	Expected	Observed	
c_W/Λ^2	no	[-0.30, 0.30]	[-0.19, 0.41]	45.9%
	yes	[-0.31, 0.29]	[-0.19, 0.41]	43.2%
\tilde{c}_W/Λ^2	no	[-0.12, 0.12]	[-0.11, 0.14]	82.0%
	yes	[-0.12, 0.12]	[-0.11, 0.14]	81.8%
c_{HWB}/Λ^2	no	[-2.45, 2.45]	[-3.78, 1.13]	29.0%
	yes	[-3.11, 2.10]	[-6.31, 1.01]	25.0%
$\tilde{c}_{HWB}/\Lambda^2$	no	[-1.06, 1.06]	[0.23, 2.34]	1.7%
	yes	[-1.06, 1.06]	[0.23, 2.35]	1.6%

 $\Delta \varphi_{jj} = y_f - y_b$ with $y_f > y_b$

Beyond dim-6: nTGC and aQGC

- * No neutral gauge couplings in SM or from dimension-6 operators at tree-level
- * They first appear at dimension 8

$$\begin{split} \mathcal{O}_{B\tilde{W}} &= iH^{\dagger}\tilde{B}_{\mu\nu}W^{\mu\rho}\{D_{\rho},D^{\nu}\}H \qquad \mathcal{O}_{WW} &= iH^{\dagger}W_{\mu\nu}W^{\mu\rho}\{D_{\rho},D^{\nu}\}H \\ \mathcal{O}_{BW} &= iH^{\dagger}B_{\mu\nu}W^{\mu\rho}\{D_{\rho},D^{\nu}\}H \qquad \mathcal{O}_{BB} &= iH^{\dagger}B_{\mu\nu}B^{\mu\rho}\{D_{\rho},D^{\nu}\}H \end{split}$$

- * Operators with quartic vertices appear at dimension 8
- Assume processes probing aQGC have negligible contribution from dimension-6 operators (constrained by other measurements)
- Lagrangian terms:

$$\mathscr{L}_{S,0-1} \propto (D_{\mu} \Phi)^4, \quad \mathscr{L}_{M,0-7} \propto (F^{\mu\nu})^2 (D_{\mu} \Phi)^2, \quad \mathscr{L}_{T,0-9} \propto (F^{\mu\nu})^4$$

arXiv:1905.07163

- $ZZ \rightarrow 2l2\nu$. Larger branching fraction than 4l
 - Also larger backgrounds
 - One Z boson boosted recoiling against the other
- * nTGC limits from unfolded p_T^{ll} (>150 GeV) distribution
- Sensitivity range found to be within unitarity bounds, no form factors applied.
- Sensitivity limited by statistical uncertainty in data (40%)
- Log-Likelihood ratio relying on Gaussian approximation (at least 10 events in the higher p_T^{II} bins)

	f_4^{γ}	f_4^{Z}	f_5^{γ}	$f_5^{\rm Z}$
Expected [×10 ⁻³]	[-1.3, 1.3]	[-1.1, 1.1]	[-1.3, 1.3]	[-1.1, 1.1]
Observed [×10 ⁻³]	[-1.2, 1.2]	[-1.0, 1.0]	[-1.2, 1.2]	[-1.0, 1.0]

ATLAS: $ZZ \rightarrow 2l2v$

1-dimensional 95% CL

 $CMS: ZZ \rightarrow 41$

* Three different channels 4e, 2e2µ, 4µ. Both Z bosons on-shell, mass range 60-120 GeV

- Interpretation from the combination of 3 channels in the four-lepton mass
- * One-loop EW corrections applied as a cross check
 - Improve in the limits by 4-6% $Z\gamma\gamma$ constrained by <u>ATLAS $Z(\nu\nu)\gamma$ </u> analysis
- Most stringent limits on ZZZ and ZZγ anomalous couplings
 Similar strategy but looser constraints (36/fb) in <u>ATLAS ZZ->41</u> analysis

arXiv:2008.10521

CMS: Wy VBS

- * W decaying in the leptonic (e or μ) channel
- * $p_T^{\gamma} > 25 \text{ GeV}, m_{jj} > 500 \text{ GeV}, |\Delta \eta_{jj}| > 2.5$
 - EW extraction from 2-D template fits to $(m_{jj}, m_{l\gamma})$
- * aQGC limits from fits to $m_{\gamma W}$ distribution
 - * Using <u>Eboli basis</u>
- * Limits set from profile likelihood test statistic
- * Most stringent limits on f_{M,2-5} and f_{T,6-7}

Parameters	Exp. limit	Obs. limit	Ubound
$f_{\rm M,0}/\Lambda^4$	[-8.1, 8.0]	[-7.7,7.6]	1.0
$f_{\mathrm{M,1}}/\Lambda^4$	[-12, 12]	[-11, 11]	1.2
$f_{\mathrm{M,2}}/\Lambda^4$	[-2.8, 2.8]	[-2.7, 2.7]	1.3
$f_{ m M,3}/\Lambda^4$	[-4.4, 4.4]	[-4.0, 4.1]	1.5
$f_{ m M,4}/\Lambda^4$	[-5.0, 5.0]	[-4.7, 4.7]	1.5
$f_{ m M,5}/\Lambda^4$	[-8.3, 8.3]	[-7.9, 7.7]	1.8
$f_{ m M,6}/\Lambda^4$	[-16, 16]	[-15, 15]	1.0
$f_{ m M,7}/\Lambda^4$	[-21, 20]	[-19, 19]	1.3
$f_{ m M,0}/\Lambda^4$	[-0.6, 0.6]	[-0.6, 0.6]	1.4
$f_{ m M,1}/\Lambda^4$	[-0.4, 0.4]	[-0.3, 0.4]	1.5
$f_{\mathrm{M,2}}/\Lambda^4$	[-1.0, 1.2]	[-1.0, 1.2]	1.5
$f_{ m M,5}/\Lambda^4$	[-0.5, 0.5]	[-0.4, 0.4]	1.8
$f_{ m M,6}/\Lambda^4$	[-0.4, 0.4]	[-0.3, 0.4]	1.7
$f_{\mathrm{M,7}}/\Lambda^4$	[-0.9, 0.9]	[-0.8, 0.9]	1.8

13 Similar strategy followed in $Z\gamma$ **SMP-18-007**

arXiv:2005.01173

CMS:WZ and ssWW

- * $W^{\pm}Z \rightarrow l^{\pm}\nu l^{'\pm}l^{'\mp}$ and $WW \rightarrow l^{\pm}\nu l^{'\pm}\nu$
 - ssWW cleanest channel in terms of EW signal to QCD bkg. ratio
- EW WZ signal separated from WZ QCD process using a BDT approach
- aQGC limits from fits to the transverse mass of the diboson system distribution
 - Eboli basis. Cutting the EFT integration at the unitarity limit
- * Improvement over other leptonic measurements of WZ and WW
 - But less restrictive than semileptonic final states

Including unitarization

	Observed ($W^{\pm}W^{\pm}$)	Expected ($W^{\pm}W^{\pm}$)	Observed (WZ)	Expected (WZ)	Observed	Expected
	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})	(TeV^{-4})
$f_{\rm T0}/\Lambda^4$	[-1.5, 2.3]	[-2.1, 2.7]	[-1.6, 1.9]	[-2.0, 2.2]	[-1.1, 1.6]	[-1.6, 2.0]
$f_{\mathrm{T1}}/\Lambda^4$	[-0.81, 1.2]	[-0.98, 1.4]	[-1.3, 1.5]	[-1.6, 1.8]	[-0.69, 0.97]	[-0.94, 1.3]
$f_{\mathrm{T2}}/\Lambda^4$	[-2.1, 4.4]	[-2.7, 5.3]	[-2.7, 3.4]	[-4.4, 5.5]	[-1.6, 3.1]	[-2.3, 3.8]
$f_{\rm M0}/\Lambda^4$	[-13, 16]	[-19, 18]	[-16, 16]	[-19, 19]	[-11, 12]	[-15 <i>,</i> 15]
$f_{\rm M1}/\Lambda^4$	[-20, 19]	[-22, 25]	[-19, 20]	[-23, 24]	[-15, 14]	[-18, 20]
$f_{\rm M6}/\Lambda^4$	[-27, 32]	[-37, 37]	[-34, 33]	[-39, 39]	[-22, 25]	[-31, 30]
$f_{\mathrm{M7}}/\Lambda^4$	[-22, 24]	[-27, 25]	[-22, 22]	[-28, 28]	[-16, 18]	[-22, 21]
$f_{\rm S0}/\Lambda^4$	[-35, 36]	[-31, 31]	[-83, 85]	[-88, 91]	[-34, 35]	[-31, 31]
$f_{\rm S1}/\Lambda^4$	[-100, 120]	[-100, 110]	[-110, 110]	[-120, 130]	[-86, 99]	[-91 <i>,</i> 97]
			14			

arXiv:2008.07013

CMS: ZZ VBS

- Four lepton final state with two high m_{jj} jets
- EW signal separated using a matrix element discriminant
- Evidence of the process achieved
- Sensitivity to charged- (T0-T2) and neutral-current operators.
 - Limits from the invariant mass of the four leptons
 - Measurement statistically limited
- Most stringent tests of neutral-current op. (T8, T9)

Unitarity upper bounds from <u>this paper</u>

Coupling	Exp. lower	Exp. upper	Obs. lower	Obs. upper	Unitarity bound
$f_{\rm T0}/\Lambda^4$	-0.37	0.35	-0.24	0.22	2.4
$f_{ m T1}/\Lambda^4$	-0.49	0.49	-0.31	0.31	2.6
$f_{\mathrm{T2}}/\Lambda^4$	-0.98	0.95	-0.63	0.59	2.5
$f_{\rm T8}/\Lambda^4$	-0.68	0.68	-0.43	0.43	1.8
$f_{\rm T9}/\Lambda^4$	-1.5	1.5	-0.92	0.92	1.8

EFT in the Higgs sector

- * <u>Anomalous HVV couplings</u> strategy also followed in the Higgs sector $A(X_{J=0} \to VV) = \frac{1}{v} \left(g_1 m_v^2 \epsilon_1^* \epsilon_2^* + g_2 f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + g_4 f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} \right)$
- Moving to EFT several bases are or have been used for the interpretation of the results -> Mapping from one complete basis to another can be done
- * <u>Warsaw basis</u>: First non-redundant set of operators proposed.
- * <u>SILH basis</u>: Designed to capture effects in which BSM couples to SM bosons

Basis	Underlying gauge symmetry	Fields used in the Lagrangian
Warsaw, SILH	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Gauge-eigenstates
BSM primaries, Higgs	$SU(3)_C \times SU(2)_L \times U(1)_Y$	Mass-eigenstates
Higgs/BSM characterisation	$SU(3)_C \times U(1)_{EM}$	Mass-eigenstates

* <u>Higgs basis</u>: From BSM primaries.

From Eur. Phys. J. C (205) 75:583

ATLAS: H→bb (resolved)

- Measurement of STXS using full run 2 dataset and the Warsaw basis as implemented in SMEFTsim (flavour universality)
- * No a-priori assumption on the set of parameters to use in the fit, retain those with more sensitivity in the measurement for 1-D fits (neglects correlations).
- * 5-D fits using most sensitive directions of the measurement
 - Diagonalising EFT matrix starting from the Fisher information matrix of the measurement and propagating the EFT parametrisation <u>ATL-PHYS-PUB-2019-042</u>

arXiv:2008.02508

ATLAS: H→bb (boosted)

Similar strategy as in the resolved analysis Expected more sensitivity to EFT at higher transverse momentum Constraints not improved wrt. resolved analysis

ATLAS: $H \rightarrow 41$

- Interpretation of STXS measurements
 in the Warsaw basis
- Main operators affecting the measurement are selected
- Studies of the linear and quadratic
 terms as well as CP-even and CP odd operators

- CP-odd operators only appear in the quadratic terms
- For several operators,
 quadratic terms are relevant

	CP-even			CP-odd			Impact on	
	Operator	Structure	Coeff.	Operator	Structure	Coeff.	production	decay
-	O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	C_{uH}	O_{uH}	$HH^{\dagger}\bar{q}_{p}u_{r}\tilde{H}$	$c_{\widetilde{u}H}$	ttH	-
	O_{HG}	$HH^{\dagger}G^{A}_{\mu u}G^{\mu u A}$	\mathcal{C}_{HG}	$O_{H\widetilde{G}}$	$HH^{\dagger}\widetilde{G}^{A}_{\mu u}G^{\mu u A}$	$c_{H\tilde{G}}$	ggF	Yes
	O_{HW}	$HH^{\dagger}W^{l}_{\mu u}W^{\mu u l}$	c_{HW}	$O_{H\widetilde{W}}$	$HH^{\dagger}\widetilde{W}^{l}_{\mu u}W^{\mu u l}$	$c_{H\widetilde{W}}$	VBF, VH	Yes
	O_{HB}	$HH^{\dagger}B_{\mu u}B^{\mu u}$	C_{HB}	$O_{H\widetilde{B}}$	$H H^\dagger \widetilde{B}_{\mu u} B^{\mu u}$	$c_{H\tilde{B}}$	VBF, VH	Yes
-	O_{HWB}	$HH^{\dagger}\tau^{l}W^{l}_{\mu u}B^{\mu u}$	c_{HWB}	$O_{H\widetilde{W}B}$	$H H^{\dagger} au^{l} \widetilde{W}^{l}_{\mu u} B^{\mu u}$	$c_{H\widetilde{W}B}$	VBF, VH	Yes

ATLAS: $H \rightarrow 41$

- Parametrisation of STXS production cross sections.
 But 4l selection can be affected by EFT operators.
 - Acceptance effects taken into account
 - > Shown to be relevant.
- Limits from 1-D fits, correlations studied through 2D fits.
 - Not trivial correlations between most of the parameter pairs

- * Dedicated search for Higgs anomalous coupling
 - 2 in Htt couplings (magnitude and the phase, ttH and ggH combined)
 - 2 in ggH couplings: c_{gg} and its CP-odd counterpart
 - 5 anomalous couplings for HVV, simplifications to conserve custodial sym.

$$\begin{aligned} A(\text{HVV}) &= \frac{1}{v} \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_{\text{V1}}^2 + \kappa_2^{\text{VV}} q_{\text{V2}}^2}{\left(\Lambda_1^{\text{VV}}\right)^2} + \frac{\kappa_3^{\text{VV}} (q_{\text{V1}} + q_{\text{V2}})^2}{\left(\Lambda_Q^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* \\ &+ \frac{1}{v} a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2),\mu\nu} + \frac{1}{v} a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2),\mu\nu} , \end{aligned}$$

• EFT interpretation using the Higgs basis

Matrix element
 techniques to
 identify the
 production
 mechanism

Channels	Coupling	Observed	Expected	Observed correlation		relation	
ggH	c _{gg} õ _{gg}	$\begin{array}{c} 0.0056\substack{+0.0025\\-0.0039}\\-0.0058\substack{+0.0037\\-0.0024}\end{array}$	$\begin{array}{c} 0.0084\substack{+0.0007\\-0.0084}\\ 0.0000\substack{+0.0085\\-0.0085}\end{array}$		1 + 0.980	1	
tĪH	$\kappa_{ m t}$ $ ilde{\kappa}_{ m t}$	$\frac{1.06\substack{+0.14\\-0.18}}{0.00\substack{+0.76\\-0.72}}$	$\frac{1.00\substack{+0.15\\-0.23}\\0.00\substack{+0.80\\-0.80}$		1 0.000	1	
tīH + ggH	$rac{\kappa_{ m f}}{ ilde{\kappa}_{ m f}}$	$\begin{array}{c} 0.76\substack{+0.23\\-0.21}\\-0.21\substack{+0.28\\-0.12}\end{array}$	$\begin{array}{c} 1.00\substack{+0.26\\-0.39}\\ 0.00\pm0.37\end{array}$		1 +0.745	1	
VBF + VH + H $\rightarrow 4\ell$	δc_z c_{zz} $c_{z\square}$ $ ilde{c}_{zz}$	$\begin{array}{r} -0.25\substack{+0.27\\-0.07}\\0.03\substack{+0.10\\-0.10}\\-0.03\substack{+0.04\\-0.04}\\-0.11\substack{+0.30\\-0.31}\end{array}$	$\begin{array}{c} 0.00 \substack{+0.10 \\ -0.28} \\ 0.00 \substack{+0.22 \\ -0.16} \\ 0.00 \substack{+0.06 \\ -0.09} \\ 0.00 \substack{+0.63 \\ -0.63} \end{array}$	$1 \\ +0.144 \\ -0.186 \\ +0.077$	1 -0.847 -0.016	1 +0.009	1

- * EFT interpretation from differential cross sections using Warsaw and SILH bases
- * Introduced CP-odd observables to constrain CP-odd operators at interference level
- * Operators studied are the ones modifying mainly ggH and the H-> $\gamma\gamma$ decay.
- * Limits from 1-D fits

$$\mathcal{L} = \frac{1}{\sqrt{(2\pi)^k |C|}} \exp\left(-\frac{1}{2} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)^T C^{-1} \left(\vec{\sigma}_{\text{data}} - \vec{\sigma}_{\text{pred}}\right)\right),$$

ATLAS: $H \rightarrow \gamma \gamma$

CMS: Higgs Combination

- Combined measurements of the production and decay rates of the Higgs boson and its couplings to vector bosons and fermions Interpretation in the HEL Lagrangian
- SILH basis with flavour universality
 Signal strength values reparametrized in terms of EFT coefficients.

Only interference term considered

- CP-even terms not tightly constrained by other data
- Acceptance effects not taken into account
- Limits from simultaneous likelihood fits in the chosen parameters.
 - Significant differences in the constraints compared to 1-D fits

Summary

- Many different precision measurements used to constrain BSM effects in terms of EFT or anomalous couplings presented.
 - Several differences in the methodology but all of them tending to include an EFT interpretation taking into account dim-6 operators (not for aQGCs)
- No deviations from the SM found in the analyses
 - Constraints of parameters improved significantly wrt. previous measurements in the EW measurements
 - More difficult to compare in the Higgs case
- Operators or effects to constrain typically chosen a priori based on symmetries, previous constraints etc...
 - But EFT parameter space shows large correlations in general and different assumptions considered between different analyses/experiments

THANKS!

BACK UP

BSM searches

Overview of CMS EXO results

Selection of observed exclusion limits at 95% C.L. (theory uncertainties are not included).

Relations between aTGCs and EFT

$$g_1^Z = 1 + c_W \frac{m_Z^2}{2\Lambda^2}$$

$$\kappa_\gamma = 1 + (c_W + c_B) \frac{m_W^2}{2\Lambda^2}$$

$$\kappa_Z = 1 + (c_W - c_B \tan^2 \theta_W) \frac{m_W^2}{2\Lambda^2}$$

$$\lambda_\gamma = \lambda_Z = c_W W \frac{3g^2 m_W^2}{2\Lambda^2}$$

$$g_4^V = g_5^V = 0$$

$$\tilde{\kappa}_\gamma = c_{\tilde{W}} \frac{m_W^2}{2\Lambda^2}$$

$$\tilde{\kappa}_Z = -c_{\tilde{W}} \tan^2 \theta_W \frac{m_W^2}{2\Lambda^2}$$

$$\tilde{\lambda}_\gamma = \tilde{\lambda}_Z = c_{\tilde{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2}$$

$$\begin{split} f_1^{\gamma} &= 1 + c_W w \frac{3g^2 P^2}{4\Lambda^2} \\ f_1^Z &= 1 + c_W \frac{m_Z^2}{\Lambda^2} - c_W w \frac{3g^2 P^2}{4\Lambda^2} \\ f_2^{\gamma} &= f_2^Z = c_W w \frac{3g^2 m_W^2}{2\Lambda^2} \\ f_3^{\gamma} &= 2 + (c_B + c_W) \frac{m_W^2}{2\Lambda^2} + c_W w \frac{3g^2 m_W^2}{2\Lambda^2} \\ f_3^Z &= 2 + (c_W (1 + \cos^2 \theta_W) - c_B \sin^2 \theta_W) \frac{m_Z^2}{2\Lambda^2} + c_W w \frac{3g^2 m_W^2}{2\Lambda^2} \\ f_4^V &= f_5^V = 0 \\ f_6^{\gamma} &= + c_{\bar{W}} \frac{m_W^2}{2\Lambda^2} - c_{\bar{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2} \\ f_6^Z &= -c_{\bar{W}} \tan^2 \theta_W \frac{m_W^2}{2\Lambda^2} - c_{\bar{W}WW} \frac{3g^2 m_W^2}{2\Lambda^2} \\ f_7^{\gamma} &= f_7^Z = -c_{\bar{W}WW} \frac{3g^2 m_W^2}{4\Lambda^2} \end{split}$$

Vertex function approach

$$\Gamma_V^{\alpha\beta\mu} = f_1^V(q-\bar{q})^\mu g^{\alpha\beta} - \frac{f_2^V}{M_W^2} (q-\bar{q})^\mu P^\alpha P^\beta + f_3^V(P^\alpha g^{\mu\beta} - P^\beta g^{\mu\alpha})$$

$$+ i f_4^V(P^\alpha g^{\mu\beta} + P^\beta g^{\mu\alpha}) + i f_5^V \epsilon^{\mu\alpha\beta\rho} (q-\bar{q})_\rho$$

$$- f_6^V \epsilon^{\mu\alpha\beta\rho} P_\rho - \frac{f_7^V}{m_W^2} (q-\bar{q})^\mu \epsilon^{\alpha\beta\rho\sigma} P_\rho (q-\bar{q})_\sigma$$

- * Momentum-space analogue of the Lagrangian approach
- * P, q, q are the four-momenta of V, W-, W+, respectively.

Simplified template cross sections

- The <u>Simplified Template Cross-Section</u> (STXS) measurements, which are the most common type of the results in ATLAS and CMS, are often used to probe the Higgs boson couplings.
- The advantage of STXS measurements are the following:
 - Maximizing experimental sensitivity
 - Isolation of possible BSM effects
 - Not fully fiducial
- The STXS measurements are performed in two steps:
 - The Stage 0 bin definitions essentially correspond to the production mode measurements.
 - The Stage 1 brings additional bins based on kinematics.

The goal is that the full granularity should become accessible in the combination of all decay channels.
 31

- Minimizing the theoretical uncertainties
- Suitable for global combinations
- No Higgs decay information

Warsaw basis

X^3		φ^6 and $\varphi^4 D^2$		$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{φ}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{\varphi\Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$	$Q_{\varphi D}$	$\left(\varphi^{\dagger}D^{\mu}\varphi\right)^{\star}\left(\varphi^{\dagger}D_{\mu}\varphi\right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu\nu}G^{A\mu\nu}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi l}^{(1)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$\varphi^{\dagger}\varphi\widetilde{G}^{A}_{\mu u}G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q_{\varphi l}^{(3)}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{l}_{p}\tau^{I}\gamma^{\mu}l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger}\varphiW^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$\varphi^{\dagger}\varphi\widetilde{W}^{I}_{\mu\nu}W^{I\mu\nu}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphi B_{\mu\nu}B^{\mu\nu}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}^{I}\varphi)(\bar{q}_{p}\tau^{I}\gamma^{\mu}q_{r})$
$Q_{\varphi \widetilde{B}}$	$\varphi^{\dagger}\varphi\widetilde{B}_{\mu\nu}B^{\mu\nu}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger}\tau^{I}\varphi\widetilde{W}^{I}_{\mu\nu}B^{\mu\nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

Table 2: Dimension-six operators other than the four-fermion ones.

SILH basis

$$\begin{split} \Delta \mathcal{L}^{(6)} &= \Delta \mathcal{L}_{SILH} + \Delta \mathcal{L}_{cc} + \Delta \mathcal{L}_{dipole} + \Delta \mathcal{L}_{V} + + \Delta \mathcal{L}_{4\psi} \\ \\ 16 \text{ operators} \\ (12 \text{ CP even, 4 CP odd)} & \text{SILH operators} \\ \text{Giudice, Grojean, Pomarol, Rattazzi JHEP 0706 (2007) 045} \\ \\ \Delta \mathcal{L}_{SILH} &= \frac{\bar{c}_{H}}{2v^{2}} \partial^{\mu} (H^{\dagger}H) \partial_{\mu} (H^{\dagger}H) + \frac{\bar{c}_{T}}{2v^{2}} \left(H^{\dagger} \overrightarrow{D^{\mu}} H\right) \left(H^{\dagger} \overrightarrow{D}_{\mu} H\right) - \frac{\bar{c}_{6} \lambda}{v^{2}} (H^{\dagger}H)^{3} \\ &+ \left(\frac{\bar{c}_{u}}{v^{2}} y_{u} H^{\dagger} H \bar{q}_{L} H^{c} u_{R} + \frac{\bar{c}_{d}}{v^{2}} y_{d} H^{\dagger} H \bar{q}_{L} H d_{R} + \frac{\bar{c}_{l}}{v^{2}} y_{l} H^{\dagger} H \bar{L}_{L} H l_{R} + h.c.\right) \\ &+ \frac{i \bar{c}_{W} g}{2m_{W}^{2}} \left(H^{\dagger} \sigma^{i} \overrightarrow{D^{\mu}} H\right) (D^{\nu} W_{\mu\nu})^{i} + \frac{i \bar{c}_{B} g'}{2m_{W}^{2}} \left(H^{\dagger} \overrightarrow{D^{\mu}} H\right) (\partial^{\nu} B_{\mu\nu}) \\ &+ \frac{i \bar{c}_{HW} g}{m_{W}^{2}} (D^{\mu} H)^{\dagger} \sigma^{i} (D^{\nu} H) W_{\mu\nu}^{i} + \frac{i \bar{c}_{HB} g'}{m_{W}^{2}} (D^{\mu} H)^{\dagger} (D^{\nu} H) B_{\mu\nu} \\ &+ \frac{\bar{c}_{\gamma} g'^{2}}{m_{W}^{2}} H^{\dagger} H B_{\mu\nu} B^{\mu\nu} + \frac{\bar{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu\nu}^{a} G^{a\mu\nu} \\ &+ \frac{\tilde{c}_{\gamma} g'^{2}}{m_{W}^{2}} H^{\dagger} H B_{\mu\nu} \tilde{B}^{\mu\nu} + \frac{\bar{c}_{g} g_{S}^{2}}{m_{W}^{2}} H^{\dagger} H G_{\mu\nu}^{a} \tilde{G}^{a\mu\nu} \end{split}$$

6

	Bosonic CP-even	Bosonic CP-odd		
O_H	$\frac{1}{2v^2} \left[\partial_{\mu} (H^{\dagger}H) \right]^2$			
O_T	$\frac{1}{2v^2} \left(H^{\dagger} \overleftarrow{D_{\mu}} H \right)^2$			
O_6	$-\frac{\lambda}{v^2}(H^{\dagger}H)^3$			
O_g	$\frac{g_s^2}{m_W^2} H^{\dagger} H G^a_{\mu\nu} G^a_{\mu\nu}$	\tilde{O}_g	$\frac{g_a^2}{m_W^2} H^{\dagger} H \widetilde{G}^a_{\mu\nu} G^a_{\mu\nu}$	
O_{γ}	$\frac{g^{\prime 2}}{m_W^2} H^{\dagger} H B_{\mu\nu} B_{\mu\nu}$	\tilde{O}_{γ}	$\frac{g^{\prime 2}}{m_W^2} H^{\dagger} H \widetilde{B}_{\mu\nu} B_{\mu\nu}$	
O_W	$\frac{ig}{2m_W^2} \left(H^{\dagger} \sigma^i \overleftrightarrow{D_{\mu}} H \right) D_{\nu} W^i_{\mu\nu}$			
O_B	$\frac{ig'}{2m_W^2}$ $\left(H^{\dagger}\overleftarrow{D_{\mu}}H\right)\partial_{\nu}B_{\mu\nu}$			
O_{HW}	$\frac{ig}{m_W^2}$ $\left(D_{\mu}H^{\dagger}\sigma^i D_{\nu}H\right)W^i_{\mu\nu}$	\tilde{O}_{HW}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger \sigma^i D_\nu H \right) W^i_{\mu\nu}$	
O_{HB}	$\frac{ig'}{m_W^2} \left(D_\mu H^\dagger D_\nu H \right) B_{\mu\nu}$	\tilde{O}_{HB}	$\frac{ig}{m_W^2} \left(D_\mu H^\dagger D_\nu H \right) \widetilde{B}_{\mu\nu}$	
O_{2W}	$\frac{1}{m_W^2} D_\mu W^i_{\mu\nu} D_\rho W^i_{\rho\nu}$			
O_{2B}	$\frac{1}{m_W^2} \partial_\mu B_{\mu\nu} \partial_\rho B_{\rho\nu}$			
O_{2G}	$\frac{1}{m_W^2} D_\mu G^a_{\mu\nu} D_\rho G^a_{\rho\nu}$	ã	a ³ iikiri arri arrh	
O_{3W}	$\frac{g^3}{m_W^2} \epsilon^{ijk} W^i_{\mu\nu} W^j_{\nu\rho} W^k_{\rho\mu}$	O_{3W}	$\frac{g}{m_W^2} \epsilon^{\epsilon j \kappa} W^i_{\mu \nu} W^j_{\nu \rho} W^{\kappa}_{\rho \mu}$	
O_{3G}	$\frac{g_s^3}{m_W^2} f^{abc} G^a_{\mu\nu} G^b_{\nu\rho} G^c_{\rho\mu}$	O_{3G}	$\frac{\sigma_s}{m_W^2} f^{avc} G^a_{\mu\nu} G^o_{\nu\rho} G^c_{\rho\mu}$	

Table 1: Bosonic D=6 operators in the SILH basis.

Higgs basis

* In its gauge invariant definition

$$\begin{split} O_{\delta\lambda_{3}} &= -\frac{1}{v^{2}}(H^{\dagger}H)^{3}, \\ O_{c_{gg}} &= \frac{g_{s}^{2}}{4v^{2}}H^{\dagger}H G_{\mu\nu}^{a}G_{\mu\nu}^{a} \\ O_{\delta c_{z}} &= -\frac{1}{v^{2}} \left[\partial_{\mu}(H^{\dagger}H) \right]^{2} + \frac{3\lambda}{v^{2}}(H^{\dagger}H)^{3} + \left(\sum_{f} \frac{\sqrt{2}m_{f_{i}}}{v^{3}}H^{\dagger}H\bar{f}_{L,i}Hf_{R,i} + \text{h.c.} \right), \\ O_{c_{zD}} &= \frac{ig^{3}}{v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\sigma^{i}\overleftrightarrow{D_{\mu}}H \right) D_{\nu}W_{\mu\nu}^{i} - \frac{ig^{2}g'}{v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\overleftrightarrow{D_{\mu}}H \right) \partial_{\nu}B_{\mu\nu}, \\ O_{c_{zz}} &= \frac{ig(g^{2} + g'^{2})}{2v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\sigma^{i}\overleftrightarrow{D_{\mu}}H \right) D_{\nu}W_{\mu\nu}^{i} - \frac{ig'(g^{2} + g'^{2})}{2v^{2}(g^{2} - g'^{2})} \left(H^{\dagger}\overleftrightarrow{D_{\mu}}H \right) \partial_{\nu}B_{\mu\nu} \\ &- \frac{ig}{v^{2}} \left(D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H \right) W_{\mu\nu}^{i} - \frac{ig'}{v^{2}} \left(D_{\mu}H^{\dagger}D_{\nu}H \right) B_{\mu\nu}, \\ O_{c_{x\gamma}} &= -\frac{2igg'^{2}}{v^{2}(g^{2} + g'^{2})} \left(D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H \right) W_{\mu\nu}^{i} + \frac{2ig'g^{2}}{2v^{2}(g^{2} - g'^{4})} \left(H^{\dagger}\overleftrightarrow{D_{\mu}}H \right) B_{\mu\nu}, \\ O_{c_{\gamma\gamma}} &= -\frac{igg'^{4}}{2v^{2}(g^{4} - g'^{4})} \left(H^{\dagger}\sigma^{i}\overleftrightarrow{D_{\mu}}H \right) D_{\nu}W_{\mu\nu}^{i} + \frac{ig'^{5}}{2v^{2}(g^{4} - g'^{4})} \left(H^{\dagger}\overleftrightarrow{D_{\mu}}H \right) \partial_{\nu}B_{\mu\nu} \\ &- \frac{igg'^{4}}{v^{2}(g^{2} + g'^{2})^{2}} \left(D_{\mu}H^{\dagger}\sigma^{i}D_{\nu}H \right) W_{\mu\nu}^{i} + \frac{ig'^{3}(2g^{2} + g'^{2})}{(g^{2} + g'^{2})^{2}v^{2}} \left(D_{\mu}H^{\dagger}D_{\nu}H \right) B_{\mu\nu}, \\ O_{\delta y_{f}}|_{ij} &= -\frac{\sqrt{2m_{f,}m_{f_{j}}}}{v^{3}}H^{\dagger}H\bar{f}_{L,i}Hf_{R,j} + \text{h.c.}, \end{split}$$

ATLAS: H→bb (resolved)

- * EFT interpretation of simplified template cross sections measurements (80/fb)
- Results obtained using the SILH basis
- * 1-dimensional fit to each of the operators assuming that the others vanish
 - Effect of the inclusion of quadratic terms are shown to be relevant for most of the operators

CMS: $H \rightarrow \tau \tau$

- * Analysis of the CP-structure of the Yukawa $H \rightarrow \tau \tau$ couplings
 - Both τ hadronically decaying or one leptonic and one hadronic decay
- * No EFT formalism but extend the τ Yukawa sector with a CP-odd coupling
- * Using ggH and VBF production modes and extracting the CP-mixing angle from a simultaneous fit to data
- * Statistically limited. Observed value of $\Phi_{2CP} = 0 \pm 23$ degrees at 68% C.L.

Eboli basis

a. Operators containing just $D_{\mu}\Phi$

The two independent operators in this class are

$$\mathcal{L}_{S,0} = \left[\left(D_{\mu} \Phi \right)^{\dagger} D_{\nu} \Phi \right] \times \left[\left(D^{\mu} \Phi \right)^{\dagger} D^{\nu} \Phi \right]$$
(A5)

$$\mathcal{L}_{S,1} = \left[(D_{\mu}\Phi)^{\dagger} D^{\mu}\Phi \right] \times \left[(D_{\nu}\Phi)^{\dagger} D^{\nu}\Phi \right]$$
(A6)

b. Operators containing $D_{\mu}\Phi$ and field strength

The operators in this class are:

$$\mathcal{L}_{M,0} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \left[(D_{\beta}\Phi)^{\dagger}D^{\beta}\Phi\right]$$
(A7)

$$\mathcal{L}_{M,1} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\nu\beta}\right] \times \left[\left(D_{\beta}\Phi\right)^{\dagger}D^{\mu}\Phi\right]$$
(A8)

$$\mathcal{L}_{M,2} = [B_{\mu\nu}B^{\mu\nu}] \times \left[(D_{\beta}\Phi)^{\dagger} D^{\beta}\Phi \right]$$
(A9)

$$\mathcal{L}_{M,3} = \left[B_{\mu\nu} B^{\nu\beta} \right] \times \left[(D_{\beta} \Phi)^{\dagger} D^{\mu} \Phi \right]$$
(A10)

$$\mathcal{L}_{M,4} = \left[(D_{\mu} \Phi)^{\dagger} \hat{W}_{\beta\nu} D^{\mu} \Phi \right] \times B^{\beta\nu}$$
(A11)

$$\mathcal{L}_{M,5} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} D^{\nu} \Phi \right] \times B^{\beta\mu}$$
(A12)

$$\mathcal{L}_{M,6} = \left[(D_{\mu}\Phi)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\nu} D^{\mu}\Phi \right]$$
(A13)

$$\mathcal{L}_{M,7} = \left[\left(D_{\mu} \Phi \right)^{\dagger} \hat{W}_{\beta\nu} \hat{W}^{\beta\mu} D^{\nu} \Phi \right]$$
(A14)

Eboli basis

$$\mathcal{L}_{T,0} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times \operatorname{Tr}\left[\hat{W}_{\alpha\beta}\hat{W}^{\alpha\beta}\right]$$
(A15)

$$\mathcal{L}_{T,1} = \operatorname{Tr} \left[\hat{W}_{\alpha\nu} \hat{W}^{\mu\beta} \right] \times \operatorname{Tr} \left[\hat{W}_{\mu\beta} \hat{W}^{\alpha\nu} \right]$$
(A16)

$$\mathcal{L}_{T,2} = \operatorname{Tr} \left[W_{\alpha\mu} W^{\mu\beta} \right] \times \operatorname{Tr} \left[W_{\beta\nu} W^{\nu\alpha} \right]$$
(A17)

$$\mathcal{L}_{T,3} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\mu\beta} \hat{W}^{\nu\alpha} \right] \times B_{\beta\nu}$$
(A18)

$$\mathcal{L}_{T,4} = \operatorname{Tr} \left[\hat{W}_{\alpha\mu} \hat{W}^{\alpha\mu} \hat{W}^{\beta\nu} \right] \times B_{\beta\nu}$$
(A19)

$$\mathcal{L}_{T,5} = \operatorname{Tr}\left[\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}\right] \times B_{\alpha\beta}B^{\alpha\beta} \tag{A20}$$

$$\mathcal{L}_{T,6} = \operatorname{Tr}\left[\hat{W}_{\alpha\nu}\hat{W}^{\mu\beta}\right] \times B_{\mu\beta}B^{\alpha\nu} \tag{A21}$$

$$\mathcal{L}_{T,7} = \operatorname{Tr}\left[\hat{W}_{\alpha\mu}\hat{W}^{\mu\beta}\right] \times B_{\beta\nu}B^{\nu\alpha} \tag{A22}$$

$$\mathcal{L}_{T,8} = B_{\mu\nu} B^{\mu\nu} B_{\alpha\beta} B^{\alpha\beta} \tag{A23}$$

$$\mathcal{L}_{T,9} = B_{\alpha\mu} B^{\mu\beta} B_{\beta\nu} B^{\nu\alpha} \tag{A24}$$