Physics of heavy-ion collisions at the highest energy frontier

Marco van Leeuwen, Nikhef, Amsterdam

5th International Conference on Particle Physics and Particle Astrophysics

Disclaimer: had to be selective, some areas are not covered

5-9 October 2020 online

Heavy Ion Physics: many-body QCD systems Lattice QCD

Initial state

Spatial and momentum distributions of incoming partons

 $T_c \approx 150 \text{ MeV}$

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Final state: hadron scattering

• **Properties of equilibrium matter:** equation of state, transport coefficients • **Dynamics**: hadronisation, interactions of partons with the medium

MC event: location of nucleons

MC event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

MC event: location of nucleons

Initial state spatial anisotropies ε_n are transferred into final state momentum anisotropies v_n by pressure gradients, flow of the Quark Gluon Plasma

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v₂ measures flow velocity

Tests hydrodynamical description, freeze-out models

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

4

Anisotropic flow: initial state and QGP expansion

Mass-dependence of v_2 measures flow velocity

Tests hydrodynamical description, freeze-out models

Challenge: constrain both initial geometry and QGP properties

Input data compared to model curves

Need multiple inputs to constrain system: Multiplicity, mean p_T , v_2 , v_3

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Total 14 model parameters constrained by data

QGP has very small shear viscosity: short mean free path, strong interactions

Azimuthal anisotropy in pp collisions

CMS, PLB 718, 795

Azimuthal anisotropy in pp collisions

CMS, PLB 718, 795

Building up azimuthal anisotropy with few scatterings

Can you have flow with a few scatterings? 'anisotropic escape' mechanism

equal to full hydro

Initially isotropic momentum distribution

Scattering randomises directions; more scatterings to 'out-of-plane'

Anisotropic density converted into anisotropic momentum distribution by few scatterings

Small system flow: recent results

Light in heavy flavor v₂ in p-Pb

Significant asymmetry for charm. Beauty v₂ compatible with 0

Mass effect? Formation time?

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Heavy flavour decay muons: charm and beauty

High $p_T > 5$ GeV or so: hard scattering, short formation time Heavy flavor: large mass $m > \Lambda_{QCD}$, produced in early stage hard scattering **Production understood**; sample the **full time evolution** of the collision

High $p_T > 5$ GeV or so: hard scattering, short formation time Heavy flavor: large mass $m > \Lambda_{QCD}$, produced in early stage hard scattering **Production understood**; sample the **full time evolution** of the collision

Nuclear modification: Pb—Pb

Charged particle p_T spectra

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

10

Nuclear modification: Pb—Pb

Charged particle p_T spectra

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

$$dN/dp_T|_{A+A}$$

Nuclear modification: charged particles

Nuclear modification: Pb—Pb

Charged particle p_T spectra

Pb+Pb: clear suppression ($R_{AA} < 1$): parton energy loss Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

ALICE, PLB720, 52 CMS, EPJC, 72, 1945 ATLAS, arXiv:1504.04337

$$dN/dp_T|_{A+A}$$

Nuclear modification: charged particles

N_{part} scaling

Azimuthal anisotropy: two mechanisms

Hydrodynamical expansion

Conversion of pressure gradients into momentum space anisotropy

Dominant effect for late formation times: light flavour at low p_T

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Parton energy loss

Anisotropy due to energy loss and path length differences

More energy loss along long axis than short axis

 $\Delta E_{med} \sim \alpha_S \hat{q} L^2$

Dominant effect for early formation times: heavy flavour, high p_T probes

11

Heavy flavor energy loss: open charm

Nuclear modification factor:

$$R_{AA} = \frac{dN^{AA}/dp_{\rm T}}{T_{AA} \, d\sigma^{pp}/dp_{\rm T}}$$

ratio of p_T spectra

 $R_{AA} < 1$, charm quarks lose energy in the QGP

ALI-PREL-320238

Different mechanisms

Low p_T : mostly elastic collisions, diffusion High p_T: mostly radiative loss

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Elliptic flow v₂

Large v₂ due to diffusion, energy loss

Heavy flavour transport coefficients

Data provide significant constraints on *T*, *p* dependence of \hat{q} and D_s

Heavy flavour transport coefficients

Data provide significant constraints on T, p dependence of \hat{q} and D_s

A consistent understanding of light and heavy flavour transport, medium expansion is emerging

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

14

Jets in heavy ion collisions

Very clear signals at high p_T: jets stand out above uncorrelated soft background

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Motivation: understand energy loss dynamics

Jet physics with pp collisions: dead cone effect

Comparing charm to light flavour splittings: suppression at small angle — dead cone effect Part of a broader program — productive exchange of ideas between pp and heavy-ion community

Transverse energy map of 1 event

Use p_T balance to measure energy loss i.e. transport of energy outside jet cone

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Energy loss: di-jet asymmetry

 $p_{T,1}$ Subleading jet energy fraction x_J $p_{T,2}$

proton-proton collisions

Pb-Pb collisions

Pb—Pb distribution shifted to lower energies: energy loss due to interactions

(relative) strength of effect depends on jet energy: fraction of energy loss decreases with p_{T,jet} dEQualitatively in line with bremmsstrahlung expectation dEStro

ng coupling:
$$\frac{dx}{dx} \propto E$$

Chesler and Rajagopal, PRD 90, 025033

Where does the radiation go: R_{AA} vs R_{jet}

Large jets lose more energy (more sources) decrease of R_{AA}

Caselderrey-Solana et al, JHEP 01 (2020) 044

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Net result: only modest increase of R_{AA} with larger R_{iet}

Final state: hadronisation and rescattering

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Fragmentation

Coalescence

Heavy flavor baryon production

ALI-PREL-336442

Charmed baryon/meson ratios much larger in pp than e^+e^- (at $p_T < 10$ GeV) Not expected: universal fragmentation Other mechanisms: color reconnection, coalescence, others? ~1/3 of c quarks end up in baryons in pp at LHC vs ~6% in e^+e^-

Λ_c production in Pb-Pb collision

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Baryon enhancement in Pb-Pb collisions similar to pp In line with expectations from coalescence models?

Taking it one step further: $\chi_{c1}(3872)$

Prompt and non-prompt $\chi_{c1}(3872)$ in pp

Production rates could also shed light on structure: coalescence cross section, rate different for molecular state?

Coalescence rates determined by system size and hadron size

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

pp and Pb-Pb

Hint of larger increase in Pb-Pb?

Probing final state interactions with correlations

Final state momentum correlations 'femtoscopy' sensitive to:

- Space-time distribution of production points
- Interactions and quantum statistics

Connections to hadron physics, neutron star Equation of State

Probing final state interactions with correlations

Final state momentum correlations 'femtoscopy' sensitive to:

- Space-time distribution of production points
- Interactions and quantum statistics

Tool to measure interaction potentials of unstable particles Connections to hadron physics, neutron star Equation of State

Future plans: ongoing upgrades in LS2

New ITS

,,,,,,,,,,,

Improved pointing resolution for muons

Run 3 and 4: higher luminosity; collect 13 nb⁻¹ Pb—Pb: ~ 10x improvement over run 2; factor 50-100x for minimum bias in ALICE

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

ALICE upgrades

TPC: GEM readout

Upgraded readout

ALICE ITS3: Ultra-thin tracker

- Lower background for di-electrons
- Improved pointing resolution for heavy flavor

ALICE Forward Calorimeter

- Very high granularity γ/π^0 separation
- Access to small-x gluon density; **Color Glass Condensate effects**

ATLAS+CMS: various upgrades for HL-LHC

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Cylindrical Structural Shell

BEAMPIPE

Half Barrels

Future upgrades: Long Shutdown 3 (2025)

Summary/conclusions

- Heavy-ion collisions explore and measure properties of QGP matter
 - Viscosity
 - Transport coefficients for high- p_{T} partons and heavy quarks
 - Theoretical multi-observable analyses becoming available: test theoretical understanding while determining key parameters
 - Azimuthal anisotropy in small systems: explore 'few-collision' limit
- Jets in heavy ion collisions: dynamics of parton energy loss mass, energy dependence, opening angle/resolution scales
- Hadronisation: charm baryon formation not fully understood
- Laboratory for hadron interaction measurements

Thank you for your attention!

J/ψ and Upsilon v_2

$J/\psi V_2$

Mechanism:

• Low p_T: charm quark energy loss and recombination

- High p_T: radiative energy loss of diquark?

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Electrons from charm, beauty decays

Open charm and beauty: similar v_2

Upsilon v₂ smaller than J/ψ No recombination

J/ψ and Upsilon v_2

• Low p_T: charm quark energy loss and recombination

- No recombination
- High p_T: radiative energy loss of diquark?

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Upsilon v₂ smaller than J/ψ

Suggests different mechanism (contributions) for open and hidden charm interactions

Higher harmonics and viscosity

Flow without a liquid

ALICE upgrade goals and performance

J/ψ and Υv_2

Charge dependent v₁ ppo¹√ ALICE Upgrade projection $\Delta v_1^{\text{odd}} = 5e-05 \text{ (arXiv:1401.3805)}$ Pb-Pb $\sqrt{s_{NN}}$ =5.02 TeV, 0-60% 10 nb⁻¹ fit function: $\mathbf{k} \times \eta$ $- \bullet v_1^{\text{odd}}[h^+] - v_1^{\text{odd}}[h^-]$ ----- k = 4.8e-05 ± 1.1e-06 (stat) 0.4 Stat. uncert. only ALICE Preliminary fit function: $\mathbf{k} \times \eta$ Pb-Pb $\sqrt{s_{NN}}$ =5.02 TeV, 5-40% 8 0.3 $k = 1.7e-04 \pm 0.5e-04$ (stat) $- \bullet v_1^{\text{odd}}[h^+] - v_1^{\text{odd}}[h^-]$ ± 0.4e-04 (syst) 0.2 0.1 -0.1 -0.2 0.6 0.4 -0.8 -0.6 -0.4 -0.2 0.2 0.8

ALI-SIMUL-140076

Initial state magnetic fields

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

ALICE-PUBLIC-2019-001 HL-LHC WG5 report

...and much more...

Λ_c production in pp and Pb-Pb

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Does hadronisation by recombination play a role? Or 'just' fragmentation?

Connection to cosmic rays: nuclear PDFs

Impact of nuclear PDF uncertainty on (atmospheric) neutrino production

Uncertainties in Nuclear PDFs

Kinematic range of measurements

Large uncertainties on the gluon content of the nucleus at low x Hints of suppression 'shadowing' seen in old DIS data (NMC) No/very few measurements available at low x

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Ratio of gluon density in nuclei to protons

Reminder: how to get x and Q² in hadronic collisions

Leading order: $2 \rightarrow 2$ kinematics:

 $Q \sim m_T$

LHC probes lower x than RHIC Mid-rapidity at LHC \approx forward rapidity at RHIC

Open charm production vs rapidity at LHC

 $R_{\rm pPb} \sim 1$ at backward and mid-rapidity; below 1 at forward rapidity Suppression mainly at small-x compatible with nuclear PDFs (shadowing) and CGC calculations CGC: Decloue et al, PRD 91, 114005

Mid-rapidity Forward rapidity: small x p–Pb, $\sqrt{s_{NN}}$ =5.02 TeV R_{pPb} LHCb Prompt D mesons, $-0.96 < y_{cms} < 0.04$ + LHCb $\sqrt{s_{NN}} = 5 \text{ TeV}$ Average D⁰, D⁺, D⁺⁺ EPS09LO \square D⁰ - EPS09NLO 1.5 --- nCTEQ15 CGC 0.5 ---- Vitev et al.: power corr. + k_{T} broad + CNM Eloss Forward Kang et al.: incoherent multiple scattering 35 0 6 $p_{_{ m T}}$ (GeV/c) $p_{_{\rm T}}$ [GeV/c] ALICE, JHEP 12 (2019) 92

Jets in pp collisions

Physics of heavy-ion collisions at the highest energy frontier, ICPPA 2020

Important reference for Pb-Pb measurements: probe pQCD/parton showers and fragmentation in pp

Keeping track of the initial energy: gamma-jet

