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Motivation

The legacy of high energy nuclear physics?

Can we eventually draw a diagram like this for the
textbooks?(Hydrogen)

Kitamura H., Ichimaru S., J. Phys. Soc. Japan 67, 950 (1998).
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JS , V. Dexheimer, H. Petersen, M. Bleicher, S. Schramm and H. Stoecker,

Phys. Rev. C 81, 044913 (2010)
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Robust constraints on the Equation of state from:

Lattice QCD, for T ≥ 130 MeV.

Constraints from lQCD:

The Interaction measure, thermodynamics at
µB = 0

Derivatives of the pressure wrt µB.
Expansion into finite real µB.

Calculations at imaginary µ.
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Getting the most out of lattice QCD → the CEM model

Using only the Fourier coefficients bk from imaginary µB simulations as input:

One can write the density of QCD as a cluster expansion:

ρB
T3 =

∂(p/T4)
∂(µB/T )

=
∑∞
k=1 bk(T ) sinh

(
k µB
T

)
Assuming the proper SB limit and using only the first two coefficients on can exactly predict finite µB thermodynamics

bk(T ) = αk
[b2(T )]k−1

[b1(T )]k−2 .

Results on the
applicability
Radius of convergence: µB/T < π

V. Vovchenko, JS , O. Philipsen and H.
Stoecker, Phys. Rev. D 97, no.11, 114030
(2018)
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Taylor expansion in real µB

Instead of expanding in imaginary µ, do a Taylor expansion in real µB
Write the expansion of the pressure using susceptibilities:

P = P0 + T 4
∑
i,j,k

1

i!j!k!
χi,j,kB,Q,S

(µB
T

)i (µQ
T

)j (µS
T

)k
, (1)

Artifacts appear around
µB/T > 2.5

Radius of convergence
µB/T < 3

High T rule out
quark-repulsion.

JS and S. Schramm, Phys. Lett.
B 736, 241-245 (2014)

A. Bazavov et. al., Phys. Rev. D 95, 054504 (2017)
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Why the breakdown at µB/T ≈ 3?

10−3 10−2 10−1 100 101

nB=n0

0

50

100

150

200

250

T
(M

eV
)

—B=T = ı

P (MeV
fm3 )

250

500

750

1000

1250

1500

Why do the methods break down?

Sudden change of isobaric lines at
this point.

From Boson (mesons/gluons)
dominated matter to fermionic
matter (nucleons/quarks).

First principle calculations seem to
fail for fermionic matter.

A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stöcker,
(Quark Matter 2019), Wuhan, China, November 3-9 2019
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Constraints at T = 0

Here we have guidance from measured neutron star masses

Without Radii no real constraints!

Add constraints from PQCD.

Still missing the important region. Extension to finite temperature → New degrees of
freedom.

F. Özel and P. Freire, Ann. Rev. Astron. Astrophys.

54, 401 (2016)

A. Kurkela, E. S. Fraga, J. Schaffner-Bielich and A.
Vuorinen, Astrophys. J. 789, 127 (2014)

Y. Fujimoto, K. Fukushima and K. Murase, Phys.

Rev. D 101, no.5, 054016 (2020)
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The QCD EoS in Heavy Ion collisions

The NICA-JINR phase diagram in T and ρB.

Details depend on the experiment.
This one is from: https://nica.jinr.ru/physics.php
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The QCD EoS in Heavy Ion collisions

The NICA-JINR phase diagram in T and ρB.

Details depend on the experiment.
This one is from: https://nica.jinr.ru/physics.php

Let’s estimate the densities expected for
central collisions.

Geometrical Overlap Model:
I ρ = 2γcmρ0
I ε = 2γ2cmε0

UrQMD with and without nuclear
potentials.

I Average densities in a box with
−0.5 < z < 0.5 fm, −3 < x, y < 3 fm.

Should give a good estimate on
expected maximum compression.
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How to study the equation of state using hadrons

Much of we today think about hadronic observables is motivated by the fluid dynamic picture of HIC:

Pre-equilibrium phase Equilibrated? phase
Final stage and particle

freeze-out
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Non-equilibrium initial state Fluid dynamic evolution
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H. Petersen, JS, G. Burau, M. Bleicher and H. Stöcker, Phys. Rev. C 78 (2008) 044901
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An example: The v1 story

Maybe:

Early studies proposed the directed flow as a
signal of the phase transition

They where done using only 1 or 2 fluid
dynamics.

Resent STAR measurements show a negative
slope of net proton v1.

Is it the phase transition?

Standard hybrid-hydro says no

But changing the initial EoS changes the slope.

What is directed flow?

Deflection of matter in the reaction plane:
v1 = 〈px/pT 〉 (y)

x(a) reaction plane

projectile spectators

participant zone

target spectators

projectile (η>0)target (η<0)

z

B. Abelev et al. [ALICE Collaboration], Phys. Rev. Lett. 111, no. 23, 232302
(2013)
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Resent STAR measurements show a negative
slope of net proton v1.

Is it the phase transition?

Standard hybrid-hydro says no

But changing the initial EoS changes the slope.

What is directed flow?

One is interested in the slope of
v1 = 〈px/pT 〉 (y) w.r.t the rapidity.
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Maybe:
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They where done using only 1 or 2 fluid
dynamics.

Resent STAR measurements show a negative
slope of net proton v1.

Is it the phase transition?

Standard hybrid-hydro says no

But changing the initial EoS changes the slope.

STAR data

Data on the net proton v1 slope show the
predicted behavior.
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An example: The v1 story

Maybe:

Early studies proposed the directed flow as a
signal of the phase transition

They where done using only 1 or 2 fluid
dynamics.

Resent STAR measurements show a negative
slope of net proton v1.

Is it the phase transition?

Standard hybrid-hydro says no

But changing the initial EoS changes the slope.

Hybrid Model

However, when checked with state of the art
hydro, no signal is found.
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An example: The v1 story

Maybe:

Early studies proposed the directed flow as a
signal of the phase transition

They where done using only 1 or 2 fluid
dynamics.

Resent STAR measurements show a negative
slope of net proton v1.

Is it the phase transition?

Standard hybrid-hydro says no

But changing the initial EoS changes the slope.

Hybrid Model

However, when the stiffness of the initial state
is changed one observes a sensitivity!
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 Initial state w/o nuclear potentials
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So v1 might be sensitive to the ’softness’ of
the initial state...
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A Phase Transition in Fluid Dynamics

In a dynamical scenario, locally the system may not be in phase eq.

Phase separation occurs.

At the critical point: divergence of correlation length.
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Susceptibilities diverge due to
mechanically unstable phase.

Separation of the two phases: Spinodal
Instabilities.

It’s not the amplitude of the density
fluctuation which diverges!

C.Sasaki, B.Friman and K.Redlich, Phys. Rev. Lett. 99, 232301 (2007)
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What is the data situation?

     Spinodal

y=1
Net-baryon

Full model simulations for fluctuations are
scarce

Separation of the two phases: Spinodal
Instabilities.

STAR data, recently corrected, shows no
clear signal.

In short: what is really measured are fluctuations and correlations in momentum space.

The downsides of hadrons: freeze-out and rescattering wash out signals

Implementation of EoS for the fully dynamical description from pre-equilibrum to
freeze-out necessary
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Electromagnetic probes

Electromagnetic probes offer a chance to probe the whole time evolution of the fireball.

In particular di-lepton pairs
created by the decay of
hadrons or quark annihilation.

ρ→ e+ + e−

q + q → e+ + e−

Process sensitive to the
medium in which it takes
place (T and ρB).

Distinct differences with or without a phase transition
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Electromagnetic probes

Indeed di-lepton emission shows a significant effect

A simulation for Au+Au at the current SIS18 beam energy.

A factor 2 enhancement of di-lepton emission due to extended ’cooking’.
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The strategy

What can be done to study the EoS at high density?

Design effective models that match lattice QCD at low µB and neutron stars at high
density.

Employ these models for heavy ion collisions as well neutron star mergers.

Find a consistent description

Possibly new analysis methods that combine many observables and statistical / machine
learning methods.
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One example: Effective model for this - the CMF

Effective SU(3)f chiral mean field model based on:

Chiral symmetry for hadrons via nucleon parity partners: Describes nuclear matter and lattice phenomenology on
masses.

Deconfined quarks and gluons via effective Polyakov Loop potential and removal of hadrons via excluded volume.

Free parameter fitted to lattice QCD thermodynamics As well as Susceptibilities from lattice

Phase diagram seems reasonable

A. Motornenko, JS, V. Vovchenko, S. Schramm and H. Stoecker, Phys. Rev. C 101, no.3, 034904 (2020)
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The CMF and neutron star mergers

This EoS enables us to treat heavy ion collisions and NS mergers on the same footing

What area of the phase diagram are tested and what is the overlap?

Low beam energy HIC compared to NS merger simulations.

Disclaimer: Not the same EoS used yet.

A dense and cold core with a hot hadronic corona.
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Summary

Lattice QCD seem to be only useful up to µB/T ≈ 3 ,after that fermions become the dominant d.o.f.

Neutron star properties constrain T = 0.

No sign of a critical point or phase transition yet.

Combined/Complex models are necessary to describe the matter in low energy HIC and neutron star
mergers.

We have to take all constraints seriously.

Neutron star mergers and low energy (Elab < 3 A GeV) probe complementary region in the phase diagram.

Treat both on the same footing → Combining QCD thermodynamics, relativistic fluid dynamics and GR.

Use statistical/ML methods to combine the wealth of data for a consistent picture of the QCD phase
diagram.
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