Специфика формирования крупномасштабной структуры Вселенной в модели темных атомов

Студент: Карни Мд Вейс Ал

Руководитель: Проф., д.ф.-м.н. Хлопов М. Ю.

Москва 2023г.

Введение

Темные атомы ОНе

Рис. 1: Темный атом ОНе

- Система темных атомов *OHe* похожа на боровскую систему атомов водорода. В отличии от атома водорода, у темного атома OHe очень тяжелое ядро, которое состоит из равномерно отрицательно заряженных частиц O (-2) и частицы He (+2),связанных вместе.
- ullet Уже найденою энергия связи ОНе для точечного заряда 4He

$$E_{OHe} = rac{Z_{O^-}^2 Z_{lpha}^2 lpha^2 m_{He}}{2} pprox -1.6 MeV$$

и радиус Бора $R_b = rac{\hbar c}{Z_{Q^{--}} Z_{lpha} m_{He} lpha} pprox 2 \cdot 10^{-13} \; {
m cm}$

Цель

Цель

- Энергетические уровни и вероятности переходов, определяются взаимодействием между частицами О и Не. Система ОНе представляет интерес для исследователей, изучающих секретную массу, эта модель позволяет объяснить противоречия в результатах поиска частиц скрытой массы в подземных экспериментах.
- Образованию атомов ОНе может сопутствовать их связывание в более сложные молекулярные структуры. Это требует разработки методов расчета образования таких структур с целью последующего анализа образования первичных О-нуклеоритов (связанных систем ядерной и темной материи)

Вероятность ковалентной связи между двумя ОНе атомами

• Решили следующее одномерное уравнение Шредингера:

$$\Delta_r \Psi + \frac{2m_{He}}{\hbar^2} \left(E + \frac{4e^2}{r} \right) \Psi = 0$$

- Вероятность образования ковалентной связи между двумя атомами OHe определяется интегралом перекрытия орбиталей He и O: $P=S^2$ где S интеграл перекрытия, заданный формулой: $S=\int \psi_{He(r)}\psi_{O(r)}dr$
- ullet В сферических координатах волновая функция может быть выражена как: $\psi_{He}(r)=2\left(rac{1}{a_0}
 ight)^{3/2}\exp\left(-rac{r}{a_0}
 ight)$
- В декартовых координатах волновая функция может быть выражена как: $\psi_O(r) = \frac{1}{\sqrt{\pi(2a_0)^3}} \exp\left(-\frac{r}{2a_0}\right)$
- Подставляя их в интегральное выражение перекрытия, мы получаем:

$$S = \int \psi_{He}(r) \psi_X(r) dr \\ \hspace{1cm} = 2 \left(\frac{1}{a_0}\right)^{3/2} \frac{1}{\sqrt{\pi (2a_0)^3}} \int \exp\left(-\frac{r}{a_0}\right) \exp\left(-\frac{r}{2a_0}\right) r^2 dr$$

Теперь, поместив интегральное значение S в $P=S^2$, мы получаем,

$$P \approx 0.005$$

Расчет длины ковалентной связи и радиальной плотности вероятности

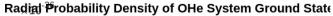
Чтобы найти длину ковалентной связи и радиальную плотность вероятности между двумя атомами OHe, нам нужно решить уравнение Шредингера для системы OHe.

 Радиальная часть волновой функции для основного состояния системы ОНе задается следующим образом:

$$\psi_{nl}(r) = \frac{u_{nl}(r)}{r} = \frac{1}{r} \left(\frac{2Z}{na_{\mathbf{0}}}\right)^{3/2} \sqrt{\frac{(n-l-1)!}{2n[(n+l)!]^3}} e^{-Zr/na_{\mathbf{0}}} \left(\frac{2Zr}{na_{\mathbf{0}}}\right)^l L_{n-l-1}^{2l+1} \left(\frac{2Zr}{na_{\mathbf{0}}}\right)^{l-1} L_{n-l-1}^{2l+1} L_{n-l-1}$$

где a_0 - радиус Бора, n и I - главные квантовые числа и квантовый момент импульса, Z - эффективный заряд ядра, а $L_n^m(x)$ - соответствующий полином Лагерра степени n и порядка m.

$$|\psi_{10}(r)|^2 = \frac{32}{\pi} \left(\frac{1}{a_0^3}\right) e^{-4r/3a_0}$$



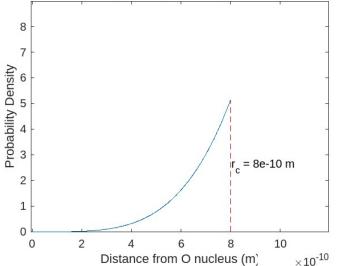


Рис. 2: радиальная плотность вероятности

Образование темной молекулы ОНе

Будем рассматривать молекулу *OHe* как двустороннюю реакцию, аналогичную образованию молекулы водорода.

Для образования нашей молекулы водорода: Фоторасщепление: $\mathbf{H}^- + h\nu \rightleftarrows \mathbf{H} + e$ Захват электрона: $\mathbf{H} + e \rightleftarrows \mathbf{H}^- + h\nu$ Для образования нашей молекулы OHe: Фоторасщепление: $O(\mathrm{He_2})^{2+} + h\nu \rightleftarrows He + OHe$ Захват гелия: $OHe + He \rightleftarrows O(\mathrm{He_2})^{2+} + h\nu$

• Точные формулы для свободного от границ коэффициента непрерывного поглощения иона. Здесь мы используем выражение, данное Охмуряй и Охмуряй (1960), преимущество которого заключается в подходящей аналитической форме. Эти авторы вычисляют поперечное сечение Фоторасщеплениеа из ${\rm H}^-$ с помощью теории эффективного радиуса действия и находят

$$\sigma(\nu) = \frac{6.85 \times 10^{-18} \gamma k^3}{\left(1 - \gamma\varrho\right) \left(\gamma^2 + k^2\right)^3} \ \mathrm{cm}^2$$

• Мы будем использовать аналогичный случай образования молекулы водорода для иона $O(He_2)^+2$ где k — волновое число излучаемого гелия, $\gamma\approx 1.54\,\mathrm{MpB}$ — параметр,захват гелия $(\gamma^2/2)$ OHe и $\varrho=2.646$ a.u.-эффективный диапазон; $k\approx 1,75\times 10^{11}\,\mathrm{cm}^{-1}$ Поставив параметры:

$$\sigma(\nu) = \frac{1.1 \times 10^{-20} \cdot k^3}{(b + k^2)^3} \,\mathrm{cm}^2$$

Где, b = 0.00000256

Коэффициент скорости фоторасщепление (OHe_2^2) в поле излучения температуры T_r определяется формулой.

$$\alpha_9 = \int_{\nu_1}^{\infty} \frac{4F_{\nu}\sigma(\nu)d\nu}{h\nu}$$

где $F_{\nu}d\nu$ - интенсивность излучения. С учетом приведенных допущений коэффициент скорости захват гелия α_4 может быть выражен как:

$$\alpha_4 = \int_0^\infty \left(\frac{m_{He}}{2\pi k T_k}\right)^{\frac{3}{2}} \exp\left(-\frac{1}{2}\frac{mv^2}{k T_k}\right) v\sigma(v) 4\pi v^2 dv$$

 Решая эти формулы численными методами, можно найти скорость образования

$$\frac{\textit{dn}_{\textit{OHe}_{2}^{2+}}}{\textit{dt}} = K_{4}n_{\textit{OHe}}n_{He^{+2}} - K_{9}n_{O(He_{2})^{2+}}$$

где n_{OHe} , n_{He} и $n_{O(He_2)^{2+}}$ представляют плотность числа OHe, He и $O(He_2)^{2+}$ соответственно. Плотность чисел (n_{OHe}) и n_{He} задается формулой:

Принимая типичные значения для межзвездного пространства $T_r=10^4~{\rm K}$ и температуру излучения за коэффициент разбавления $W=10^{-14}$, мы показываем в таблице 1 некоторые значения k_4 и k_9 , Где, $k_9=W\cdot\alpha_9$ и $k_4=W\cdot\alpha_4$.

Таблица 1: Коэффициент скоростизахват гелия и фоторасщепление

Temperature (K)	$k_4 \; (cm^3 \; s^{-1})$	$k_{9} (s^{-1})$
10	3.872×10^{-211}	0.0
50	3.260×10^{-73}	2.366×10^{-153}
100	2.716×10^{-56}	1.377×10^{-98}
1000	3.700×10^{-42}	2.671×10^{-49}
2000	9.706×10^{-42}	1.468×10^{-46}
3000	1.043×10^{-41}	1.217×10^{-45}
4000	9.863×10^{-42}	3.631×10^{-45}
5000	9.513×10^{-42}	7.527×10^{-45}
6000	9.649×10^{-42}	1.337×10^{-44}
7000	1.041×10^{-41}	2.231×10^{-44}
8000	1.157×10^{-41}	3.534×10^{-44}
9000	1.293×10^{-41}	5.311×10^{-44}
10000	1.440×10^{-41}	7.625×10^{-44}
15000	2.128×10^{-41}	2.758×10^{-43}
20000	2.683×10^{-41}	6.179×10^{-43}
50000	4.808×10^{-41}	5.667×10^{-42}
100000	6.663×10^{-41}	2.421×10^{-41}
200000	8.517×10^{-41}	9.138×10^{-41}
500000	1.073×10^{-40}	4.671×10^{-40}
1000000000	1.628×10^{-40}	6.447×10^{-35}

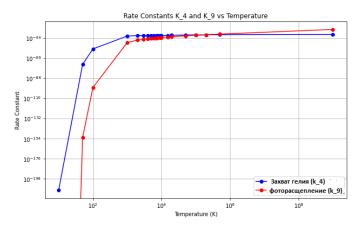


Рис. 3: Логарифмическое сравнение скорости реакции фоторасщепление и захват гелия, которое показывает равновесную реакцию

• Давайте определим скорость реакции образования $O(He_2)^{2+}$ в период космологического нуклеосинтеза при температуре = $100 KeV \approx 10^9 Kelvin$ Теперь мы получаем

$$rac{dn_{
m OHe2^{2+}}}{dt} = {
m K4n_{OHe}n_{He^{+2}}} - {
m K_9n_{O(He2)^{2+}}} pprox 3 \cdot 10^{-20} {
m cm^3} s^{-1}$$

Хотя при температуре скорость реакции $O(He_2)^{2+}$ обозрение молекулы OHe оказалась весьма низкие этот процесс приводит с вероятностью 0.005 к образованию молекул, которые в последствии могут соединяться в более сложные структуры. Однако мы можем применить ту же методологию для исследования образования молекул OHe при разных температурах, используя идентичный процесс. Изменяя температуру, мы можем исследовать температурную зависимость реакции и оценить условия, при которых образование молекулы OHe становится благоприятным.

Заключение

В работе рассматривается гипотеза о скорости рекомбинации ОНе. Мы рассмотрели Темный атом ОНе как структуру, подобную атому Бора, состоящую из отрицательно заряженного ядра О и альфа-частицы Не. которая действует подобно электрону с положительным зарядом. Ковалентная связь между двумя атомами ОНе включает совместное использование электроноподобных частиц Не между ядрами О, что приводит к образованию стабильной молекулы. Следует отметить, что вероятность образования молекул ОНе составляет 0.005, что позволит оценить впоследствии вероянтость образования многоатомных структур ОНе и образования первичных специфических форм О-нуклеоритов - нейтральных состояний многозарядных ядер, электричский заряд которых скомпенсирован соответствующим числом О-частиц.В нашей будущей работе мы попытаемся решить эту проблему. Мы также сравним предполагаемое количество атомов ОНе с дальнейшими проверками или ограничениями на обилие ОНе во Вселенной, чтобы проверить согласованность модели. Кроме того, мы попытаемся усовершенствовать модель, включив дополнительные теоретические ограничения и сравнив с более точными оценками. Кроме того, мы изучим, как один атом взаимодействует между собой и с другим другим атомом, чтобы узнать, как он ведет себя в случае образования структуры.

Приложение: Численная вероятность ковалентной связи между двумя атомами OHe

```
% Define the wave functions for He and X
psi_He = @(r) 2*(1/a0)^(3/2)*exp(-r/a0);
psi X = @(r) \frac{1}{\sqrt{2^*a0}} = (-r/(2^*a0));
% Define the integration limits and step size
a = 0:
b = 100*a0;
dx = a0/100;
% Perform the numerical integration
r = a:dx:b:
integrand = psi_He(r).*psi_X(r).*r.^2;
integral_value = trapz(r, integrand);
% Display the result
disp(['Integral value: ' num2str(integral_value)]);
```

```
Integral value: 0.069605
```

Рис. 4: Код

Вычисление длины ковалентной связи и радиальной плотности вероятности I

• Радиальная часть волновой функции для основного состояния системы XHe задается следующим образом:

$$\psi_{nl}(r)=rac{u_{nl}(r)}{r}=rac{1}{r}\left(rac{2Z}{na_0}
ight)^{3/2}\sqrt{rac{(n-l-1)!}{2n[(n+l)!]^3}}e^{-Zr/na_0}\left(rac{2Zr}{na_0}
ight)^lL_{n-l-1}^{2l+1}\left(rac{2Zr}{na_0}
ight)$$
 где a_0 - радиус Бора, n и l - главные квантовые числа и угловой момент импульса, Z - эффективный заряд ядра, а $L_n^m(x)$ - связанный полином Лагерра степени n и порядка m .

- Для системы ОНе мы имеем Z=2 (поскольку ядро О имеет заряд -2, а ядро Не имеет заряд +2) и I=0 (поскольку основное состояние имеет нулевой угловой момент). Следовательно, радиальная часть волновой функции сводится к: $\psi_{n0}(r)=\frac{u_{n0}(r)}{r}=\frac{1}{\sqrt{\pi}}\left(\frac{8Z^3}{s_0^3n^3}\right)^{1/2}e^{-Zr/na_0}$ где мы использовали $L_0^0(x)=1$ и условие нормализации $\int_0^\infty |\psi_{n0}(r)|^2r^2dr=1$.
- Длина ковалентной связи это значение r, которое максимизирует радиальную плотность вероятности $|\psi_{n0}(r)|^2$. Это происходит в $r=r_c=\frac{3}{2}a_0$. Следовательно, длина ковалентной связи для молекулы OHe равна: $r_c=\frac{3}{2}a_0=3\times 10^{-10}~\mathrm{m}$
- Радиальная плотность вероятности для основного состояния системы OHe определяется следующим образом: $|\psi_{n0}(r)|^2=rac{1}{\pi}\left(rac{8Z^3}{s^2\pi^3}
 ight)e^{-2Zr/na_0}$
- ullet Подключая Z=2, $a_0=2 imes 10^{-10}~{
 m m}$ и n=1, мы получаем: $|\psi_{10}(r)|^2=rac{32}{\pi}\left(rac{1}{a^3}
 ight){
 m e}^{-4r/3a_0}$

```
1 % Define constants
2 mX = 10.8; % mass of X particle in atomic mass units (amu)
mHe = 4.00260; % mass of He particle in amu
4 alpha = 1/137: % fine structure constant
5 hbar = 1.0546e-34: % Planck constant over 2*pi in J*s
6 e = 1.6022e-19; % elementary charge in C
7 k = 8.9876e9: % Coulomb constant in N*m<sup>2</sup>/C<sup>2</sup>
8 a0 = 2e-11; % Bohr radius in m
9 % Define XHe system parameters
10 r0 = 2*a0; % distance between X nucleus and He particle in m
|\mathbf{II}| | \mathbf{Z} = -2; % charge on X nucleus
12 % Define grid for calculating probability density
13 N = 1000:
14 r = linspace(0, 20*r0, N);
15 % Calculate radial probability density
16 psi = \exp(-\operatorname{sqrt}(k*Z*mX*mHe)/(\operatorname{hbar*alpha})*\log(r/r0)).*r;
17 prob_density = 4*pi*r.^2.*abs(psi).^2;
18 % Find covalent bond length
19 [~, ind] = max(prob_density);
20 | rc = r(ind):
21 % Plot radial probability density
22 plot(r, prob_density);
23 xlabel('Distance from O nucleus (m)'):
24 vlabel('Probability Density'):
25 title('Radial Probability Density of OHe System Ground State');
26 hold on:
27 plot([rc rc], [0 max(prob_density)], '--r');
28 text(rc+0.1*r0, max(prob_density)/2, ['r_c = ', num2str(rc), ' m']);
29 hold off:
```

Вычисления константа скорости реакции 1

- Энергия сродства к гелия: $= E(O(He_2)^{2+} E(OHe))$
- ullet Энергия ионизации $E(O(He_2)^{2+} = rac{\Im ext{нергия ионизации одного атома}}{Z_{ ext{eff}}^2}$
- $Z_{\text{eff}} = -2 + (2 \times 2) = 2$
- ullet мы можем найти γ из $(\gamma^2/2=\Im$ нергия сродства к гелия
- Чтобы найти волновое число полученного иона гелия, мы предполагаем, что волна атома ОНе исходит из бесконечности на первую орбиту, тогда значение волнового числа равно:

$$k = R\left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right)$$

• Чтобы найти α_9 и α_4 , мы использовали эти форму,

$$\alpha_9 = A' \cdot \beta(T) \cdot \exp^{-\frac{-0.861}{T_4}}$$

$$\alpha_4 = 9.09 \times 10^{-16} T_k^{-3/2} \beta(T_k) \,\mathrm{cm}^3 \,\mathrm{s}^{-1}$$

где
$$A' = \frac{8A(1.6)^3}{c^2h^3}$$
 И

$$\beta(T) = \int \frac{k^4 dk}{(k^2 + 0.00000256) \left[\exp\left(\frac{1.6 \times 10^6 k^2}{T_4}\right) - \exp\left(\frac{-0.861}{T_4}\right) \right]}$$

Вычисления константа скорости реакции ІІ

Таблица 2: $E(O({\rm He_2})^{2+})$ коэффициент скорости образования и фоторасщепление в зависимости от температуры

- "	5 (7)	/ 3 –1>	(-1)
Temperature (K)	Beta (T)	$\alpha_4 \; (\text{cm}^3 \text{s}^{-1})$	$\alpha_{9} \; (s^{-1})$
10	4.26×10^{-185}	3.872×10^{-197}	0.0
50	4.01×10^{-46}	3.260×10^{-59}	2.366×10^{-139}
100	9.45×10^{-29}	2.716×10^{-42}	1.377×10^{-84}
1000	4.07×10^{-13}	3.700×10^{-28}	2.671×10^{-35}
2000	3.02×10^{-12}	9.706×10^{-28}	1.468×10^{-32}
3000	5.96×10^{-12}	1.043×10^{-27}	1.217×10^{-31}
4000	8.68×10^{-12}	9.863×10^{-28}	3.631×10^{-31}
5000	1.17×10^{-11}	9.513×10^{-28}	7.527×10^{-31}
6000	1.56×10^{-11}	9.649×10^{-28}	1.337×10^{-30}
7000	2.12×10^{-11}	1.041×10^{-27}	2.231×10^{-30}
8000	2.88×10^{-11}	1.157×10^{-27}	3.534×10^{-30}
9000	3.84×10^{-11}	1.293×10^{-27}	5.311×10^{-30}
10000	5.01×10^{-11}	1.440×10^{-27}	7.625×10^{-30}
15000	1.36×10^{-10}	2.128×10^{-27}	2.758×10^{-29}
20000	2.64×10^{-10}	2.683×10^{-27}	6.179×10^{-29}
50000	1.87×10^{-9}	4.808×10^{-27}	5.667×10^{-28}
100000	7.33 × 10 ⁻⁹	6.663×10^{-27}	2.421×10^{-27}

ullet Подставляя значение eta(T) из таблицы, мы можем найти $lpha_{ullet}$ и $lpha_{ullet}$

Python Code

```
1 import numpy as np
3
  def calculate beta(T 4. n):
       delta k = 1 / n # Width of each subinterval
4
       k_values = np.linspace(delta_k/2, 1-delta_k/2, n) # Midpoints of
5
           subintervals
       # Evaluate the integrand at the midpoints and sum the results
7
8
       integral sum = sum(
           (k**4) / ((k**2 + 0.00000256) * (np.exp((1.6*10**6)*k**2/T_4) -
9
                np.exp(-0.861/T 4))
           for k in k values
10
11
12
       beta = integral_sum * delta_k
13
      return beta
14
15
16 T_4 = T/10000 #Put T as needed
| 17 | n = 1000
18 beta = calculate beta(T 4. n)
19 print (beta)
```

Листинг 2: