МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ) ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

Выпускная квалификационная работа бакалавра на тему

«Установление пределов на поток частиц возбуждённой скрытой массы при помощи детектора Borexino»

ВЫПОЛНИЛ: СТУДЕНТ ГРУППЫ Б19-102 К. К. КИСЕЛЕВ НАУЧНЫЙ РУКОВОДИТЕЛЬ: К.Ф.-М.Н. Е. А. ЛИТВИНОВИЧ НАУЧНЫЙ КОНСУЛЬТАНТ: М.Н.С. Р. Р. НУГМАНОВ

Цели и задачи работы

Цель работы: изучение механизмов проявления возбуждённой скрытой массы Вселенной в детекторе Борексино

Задачи работы:

•рассмотреть модель возбуждённой скрытой массы и рассчитать ожидаемый сигнал в детекторе Борексино;

•определить основные источники фона и оценить их вклад;

•на основе экспериментальных данных Борексино произвести поиск событий взаимодействия возбуждённой скрытой массы с протонами и оценить параметры модели.

Скрытая масса

Свидетельства существования:

- Анизотропия реликтового излучения
- Кривые вращения галактик
- Гравитационное линзирование

Кандидаты на роль скрытой массы:

- Нейтрино
- Аксионы
- WIMP
- MACHO
- Частицы из теории суперсимметрии

Возбуждённая скрытая масса

Масса частицы скрытой массы (WIMP) М ≈ 100 ГэВ

Энергия возбуждения ∆Е ∈ (0.1; 1.0) МэВ

Мотивация:

- •сигнал гамма-излучения из центра Млечного Пути с энергией 511 МэВ, зарегистрированный экспериментом INTEGRAL/SPI;
- •аномально большое число позитронов в космических лучах, обнаруженное в эксперименте PAMELA;

•годичная модуляция сигнала в эксперименте DAMA/LIBRA.

Результаты эксперимента DAMA/LIBRA [1] по поиску возбуждённой скрытой массы (зелёным и красным цветами)

Кинематика реакции

Сигнатура события в Борексино: одиночный протон отдачи

При рассмотрении кинематики процесса используются следующие условия:

•дифференциальное сечение реакции получено в первом борновском приближении;

•масса переносчика взаимодействия $m_V \sim$ 1 ГэВ;

- •масса частицы скрытой массы много больше массы протона M ≫ m;
- начальная кинетическая энергия протона в лабораторной системе отсчёта и в СЦИ много меньше энергии перехода частицы скрытой массы между состояниями.

Ожидаемый вид энергетического спектра событий рассеяния возбуждённой скрытой массы на протонах детектора

Vesc

Спектр энергии протонов отдачи:

тдачи:
$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{N_T F \rho_D}{M} \int_{v_{min}}^{\infty} v f(v, v_E, v_{esc}) \mathrm{d}v \frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = A e^{-\frac{(E_R - \Delta E)^2}{2\sigma_1^2}}$$

Параметры модели: $N_T = 6 \cdot 10^{28}$ протонов на тонну сцинтиллятора, плотность скрытой массы $\rho_D = 0.4$ ГэВ/см³, доля WIMP в возбуждённом состоянии F = 0.5, энергия возбуждения $\Delta E = 1$ МэВ, масса WIMP M = 100 ГэВ, эффективное сечение взаимодействия WIMP с нуклоном $\sigma_n = 10^{-43}$ см²

Учёт квенчинга:

$$\frac{\mathrm{d}R}{\mathrm{d}E_{vis}}(E_{vis}) = \frac{\mathrm{d}R}{\mathrm{d}E_R}(E_R(E_{vis})) \times \frac{\partial E_R}{\partial E_{vis}}(E_{vis})$$

Учёт разрешения детектора:

$$\frac{\mathrm{d}R}{\mathrm{d}E_{det}} = \int_{-0}^{\infty} \frac{\mathrm{d}R}{\mathrm{d}E_{vis}} G(E_{det}, E_{vis}) \mathrm{d}E_{vis}$$

Сравнение полученных энергетических спектров

Ожидаемый в Борексино энергетический спектр. Расчётная скорость счёта (ДЕ = 1 МэВ)

Исследование зависимости спектра от параметра ΔE

× 10-7

2.5	Значение параметра	Скорость счёта в интервале	Доля от полной
	$\Delta E, M$ əB	энергий (0.2; 0.3) МэВ, год ⁻¹	скорости счёта, %
² ⁻ u	0.70	$(5.6 \pm 0.1) \times 10^{-2}$	0.1
-15 's	0.75	$(2.39 \pm 0.05) \times 10^{-1}$	0.6
eV ¹	0.80	$(8.5 \pm 0.2) \times 10^{-1}$	2.0
≥ 1 Щ	0.85	2.49 ± 0.05	5.7
dR/d	0.90	6.1 ± 0.1	14
0.5	0.95	12.3 ± 0.2	27
	1.00	21.0 ± 0.4	45

Схема детектора Борексино

Центральная часть детектора Борексино

Анализ фоновых процессов

Фоновые процессы:

•рассеяние атмосферных нейтрино на протонах мишени: $R_{\nu} = 1.2 \cdot 10^{-3}$ год⁻¹;

•рассеяние быстрых нейтронов на протонах мишени: $R_n \le 5.1 \cdot 10^{-2}$ год⁻¹.

$$R_{\Phi} = R_{Po} + R_U + R_{Th} = 18.5 \pm 0.2$$
(сист) год⁻¹ × $\left(\frac{M_{sc}}{100 \text{ тонн}}\right)$

Анализ экспериментальных данных Борексино. Общие критерии отбора. Результат отбора

•Форма импульса события соответствует протону;

- •Событие-кандидат находится в чувствительном объёме (сфера радиусом 1 метр в центре детектора, масса сцинтиллятора M_{sc} = 3.7 тонн);
- •мюонное вето 2 с (отбрасывание событий, находящихся во временном окне длительностью 2 с после регистрации мюона);
- •событие-кандидат не должно быть шумом электроники;
- •энергия события-кандидата лежит в интервале (0.2; 0.3) МэВ.

Результат отбора: 1 событие-кандидат за 970 дней живого времени сбора данных.

$$N_{
m эксп} = 1$$
 событие-кандидат
 $N_{
m \varphi} = 1.20 \pm 0.02~({
m cuct})$ событий Feldman-Cousins [2] $N_{90} = 3.17 \pm 0.02~({
m cuct})$ событий

Верхний предел потока частиц возбуждённой скрытой массы (ΔE = 1 МэВ)

Верхний предел энергетического потока возбуждённой скрытой массы (ΔE = 1 МэВ)

Верхний предел эффективного сечения взаимодействия частиц возбуждённой скрытой массы с нуклонами (М = 120 ГэВ)

Верхний предел эффективного сечения взаимодействия частиц возбуждённой скрытой массы с нуклонами (ДЕ = 1 МэВ)

Заключение

В ходе проведённых исследований получены следующие основные результаты:

• рассмотрена модель возбуждённой скрытой массы с набором свободных параметров, основные из которых: масса WIMP M, эффективное сечение взаимодействия WIMP с нуклоном *σ*_n, доля WIMP в возбуждённом состоянии, энергия возбуждения ΔЕ;

• произведён расчёт ожидаемого спектра событий и сигнала от взаимодействия частиц возбуждённой скрытой массы с протонами мишени детектора Борексино;

для уровня достоверности 90% получен верхний предел эффективного сечения σ_n взаимодействия частиц возбуждённой скрытой массы с нуклонами при фиксированном значении массы частицы
 M = 120 ГэВ для интервала значений ΔΕ ∈ (0.7; 1.0) МэВ;

 для уровня достоверности 90% получен верхний предел эффективного сечения σ_n взаимодействия частиц возбуждённой скрытой массы с нуклонами при фиксированном значении ΔE = 1 МэВ для интервала значений массы M ∈ (100; 1000) ГэВ.

Впервые получены результаты в неисследованной другими экспериментами области параметров (ΔΕ; σ_n). Результат даёт указание к исследованию возбуждённой скрытой массы с энергией возбуждения в интервале (0.15; 0.70) МэВ.

Спасибо за внимание!

Дополнительные слайды

Расчёт спектра по энергии отдачи протона

Спектр по энергии отдачи протона:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{N_T F \rho_D}{M} \int_{v_{min}}^{\infty} v f(v, v_E, v_{esc}) \mathrm{d}v \frac{\mathrm{d}\sigma}{\mathrm{d}E_R}$$

Из кинематики реакции можно получить

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = \frac{\sigma_n}{2mv^2} \qquad \qquad v_{min} = \frac{|E_R - \Delta E|}{\sqrt{2m\Delta E}}$$

Расчёт спектра по энергии отдачи протона

Максвелловское распределение частиц скрытой массы по скоростям:

$$f(v, v_{esc}) = \begin{cases} \left(\frac{3-\frac{8}{\pi}}{\pi v_c^2}\right)^{\frac{3}{2}} 4\pi v^2 e^{-\frac{\left(3-\frac{8}{\pi}\right)v^2}{v_c^2}}, & \text{при } v < v_{esc} \\ 0, & \text{при } v > v_{esc} \end{cases}$$

 $v_c = 220 \text{ км/с} - \text{скорость движения по круговой орбите вокруг центра Галактики на расстоянии Земли$

Средняя скорость частицы: 370 км/с, средняя энергия частицы: 60 кэВ

Расчёт спектра по энергии отдачи протона

После взятия интеграла и отбрасывания второго слагаемого получим:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} \approx \frac{N_T F \rho_D \sigma_n}{2mM} \sqrt{\frac{\left(3-\frac{8}{\pi}\right)}{\pi v_c^2}} e^{-\frac{(E_R - \Delta E)^2 \left(3-\frac{8}{\pi}\right)}{2v_c^2 m \Delta E}} = A e^{-\frac{(E_R - \Delta E)^2}{2\sigma_1^2}}$$

где введены обозначения

$$A = \frac{N_T F \rho_D \sigma_n}{2m M v_c} \sqrt{\frac{\left(3 - \frac{8}{\pi}\right)}{\pi}}, \ \sigma_1^2 = \frac{\Delta E m v_c^2}{3 - \frac{8}{\pi}}$$

Учёт квенчинга

Зависимость световыхода на единицу длины от удельных потерь энергии заряженной частицы даётся формулой:

 $\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\frac{\mathrm{d}E}{\mathrm{d}x}}{1 + k_B \frac{\mathrm{d}E}{\mathrm{d}x}}$

Формула для полной энергии световой вспышки при данной кинетической энергии протона:

 $E_{vis} = \int_{0}^{E_R} \frac{\mathrm{d}E}{1 + k_B \frac{\mathrm{d}E}{\mathrm{d}x}}$

Формула Бете-Блоха:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = -\frac{4\pi e^4 Z^2}{m_e v^2} \sum_A n_A Z_A \ln\left(\frac{2m_e v^2}{\bar{I}_A}\right)$$

Учёт квенчинга для протонов

Учёт квенчинга для протонов

Переход к спектру по энергии с учётом эффекта квенчинга:

$$\frac{\mathrm{d}R}{\mathrm{d}E_{vis}}(E_{vis}) = \frac{\mathrm{d}R}{\mathrm{d}E_R}(E_R(E_{vis})) \times \frac{\partial E_R}{\partial E_{vis}}(E_{vis})$$
$$E_R(E_{vis}) = \frac{1}{2} \left(aE_{vis} + \sqrt{a^2 E_{vis}^2 + 4bE_{vis}} \right)$$
$$\frac{\partial E_R}{\partial E_{vis}}(E_{vis}) = \frac{a}{2} + \frac{a^2 E_{vis} + 2b}{2\sqrt{a^2 E_{vis}^2 + 4bE_{vis}}}$$

Вид функции отклика детектора Борексино:

$$G(E_{det}, E_{vis}) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(E_{det} - E_{vis})^2}{2\sigma_0^2}}$$

где
$$\sigma_0 = 0.06 \sqrt{E_{det}}$$

Спектр событий с учётом разрешения детектора даётся формулой

$$\frac{\mathrm{d}R}{\mathrm{d}E_{det}} = \int_{E_{vis\,min}}^{E_{vis\,max}} \frac{\mathrm{d}R}{\mathrm{d}E_{vis}} G(E_{det}, E_{vis}) \mathrm{d}E_{vis} = \int_{0}^{\infty} \frac{\mathrm{d}R}{\mathrm{d}E_{vis}} G(E_{det}, E_{vis}) \mathrm{d}E_{vis}$$

Анализ фоновых процессов. Распад ²³⁸U и ²³²Th

Иротон	Энергия	Квенчинг-	Энергия сцинтилляцинной
11301011	α -частицы, МэВ	фактор	вспышки, МэВ
²¹⁰ Po	5.31	0.079	0.42
222 Rn	5.49	0.082	0.45
218 Po	6.00	0.089	0.53
220 Rn	6.29	0.089	0.56
216 Po	6.78	0.099	0.67
214 Po	7.69	0.109	0.84
212 Po	8.78	0.125	1.10

Анализ фоновых процессов. Распад ^{238}U и ^{232}Th

Анализ фоновых процессов. Распад ^{238}U и ^{232}Th

Анализ фоновых процессов. Распад ²¹⁰*Ро*

В 2015-2016 годах на детекторе Борексино была установлена система теплоизоляции и активного контроля температуры для устранения фона от цепочки распада

²¹⁰Pb
$$\xrightarrow{\beta}$$
 ²¹⁰Bi $\xrightarrow{\beta}$ ²¹⁰Po $\xrightarrow{\alpha}$ ²⁰⁶Pb

Анализ фоновых процессов. Распад ²¹⁰*Ро*

Анализ фоновых процессов. Атмосферные нейтрино

Энергетический спектр атмосферных нейтрино

Анализ фоновых процессов. Быстрые нейтроны

Как показывают исследования, проведённые на детекторе Борексино, наложение временного вето длительностью 2 секунды после регистрации мюона оставляет 0.05% от всего фона быстрых нейтронов.

$$R_n \le 5.1 \cdot 10^{-2} \operatorname{событий} \times \frac{M_{sc}}{100 \operatorname{тонh}}$$

Анализ экспериментальных данных Борексино. Параметр Гатти

