МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 524.88, 539.12

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К БАКАЛАВРСКОЙ ДИПЛОМНОЙ РАБОТЕ УСТАНОВЛЕНИЕ ПРЕДЕЛОВ НА ПОТОК ЧАСТИЦ ВОЗБУЖДЁННОЙ СКРЫТОЙ МАССЫ ПРИ ПОМОЩИ ДЕТЕКТОРА BOREXINO

Студент	К. К. Киселев
Научный руководитель,	
к.фм.н.	Е. А. Литвинович
Научный консультант	Р. Р. Нугманов

Москва2023

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

УСТАНОВЛЕНИЕ ПРЕДЕЛОВ НА ПОТОК ЧАСТИЦ ВОЗБУЖДЁННОЙ СКРЫТОЙ МАССЫ ПРИ ПОМОЩИ ДЕТЕКТОРА BOREXINO

Студент	К. К. Киселев
Научный руководитель, к.фм.н.	Е. А. Литвинович
Научный консультант	Р. Р. Нугманов
Рецензент	И.С. Ломская
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов

СОДЕРЖАНИЕ

B	веде	ние	5
	Скр	ытая масса	5
	Воз	буждённая скрытая масса	6
	Экс	перимент BOREXINO	8
1	Ож	идаемый вид энергетического спектра событий рассея-	-
	ния	возбуждённой скрытой массы	10
	1.1	Кинематика реакции. Сигнатура события в Борексино	10
	1.2	Расчёт спектра энергии отдачи протона	12
	1.3	Учёт квенчинг-эффекта	14
	1.4	Учёт разрешения детектора	17
	1.5	Исследование зависимости спектра от параметра ΔE	19
2	Ана	ализ фоновых процессов	21
	2.1	Распады ²³⁸ U и ²³² Th	21
	2.2	Распад ²¹⁰ Ро	23
	2.3	Другие источники фона	25
		2.3.1 Атмосферные нейтрино	25
		2.3.2 Быстрые нейтроны	27
	2.4	Суммарный ожидаемый фон	28
3	Ана	ализ экспериментальных данных Борексино	29
	3.1	Параметр Гатти	29
	3.2	Чувствительный объём	31
	3.3	Общие критерии отбора	32
	3.4	Ограничение на поток частиц возбуждённой скрытой массы	32
4	Зак	лючение	37

Список использованных источников

ВВЕДЕНИЕ

СКРЫТАЯ МАССА

В астрофизике и космологии существует достаточное количество свидетельств существования материи, не участвующей в электромагнитном взаимодействии, и потому невидимой – скрытой массы [1]. К таким свидетельствам относятся:

- анизотропия реликтового излучения;
- гравитационное линзирование;
- кривые вращения галактик.

Хотя исходные предположения о свойствах скрытой массы были различными, по результатам моделирования эволюции Вселенной с учётом скрытой массы было выявлено, что преобладает холодная скрытая масса: её доля от критической плотности Вселенной составляет $\Omega_{CDM} = 26.4\%$. Такой тип скрытой массы характеризуется тем, что в момент выхода из температурного равновесия с барионным веществом, её частицы были нерелятивистскими.

Кандидаты на роль скрытой массы [1]:

- MACHO (massive astrophysical compact halo object);
- WIMP (weakly interacting massive particle)
- аксион;
- нейтрино;
- кандидаты из теорий суперсимметрии;
- экзотические кандидаты.

Основная проблема проверки гипотез, относящихся к физике частиц: наблюдение частиц скрытой массы затруднено в связи с малостью сечения их взаимодействия с барионной материей: $\sigma \sim 10^{-46}$ см² (для частиц массой M = 100 ГэВ) [2].

ВОЗБУЖДЁННАЯ СКРЫТАЯ МАССА

В связи с результатами таких экспериментов, как INTEGRAL/SPI [3] и PAMELA [4], получила распространение следующая гипотеза [5; 6] о скрытой массе: существование частиц χ типа WIMP, масса которых $M_{\chi} = M \sim 100$ ГэВ с переносчиком взаимодействия V массой $m_V \sim 1$ ГэВ, имеющих возбуждённое состояние с энергией $\Delta E \sim 1$ МэВ. Вид введённого лагранжиана для частиц скрытой массы и переносчиков взаимодействия определяет процессы рассеяния на частицах стандартной модели и снятия возбуждения (рисунок 1).

Рисунок 1 — Диаграммы процессов неупругого и упругого рассеяния частиц скрытой массы на ядрах [7]

Такая модель может объяснить сигнал гамма-излучения из центра Млечного Пути с энергией 511 МэВ, зарегистрированный экспериментом INTEGRAL/SPI, если предположить, что переход частицы скрытой массы из возбуждённого состояния в основное может происходить с испусканием электрон-позитронной пары. Кроме того, аномально большое число позитронов в космических лучах, обнаруженное в эксперименте PAMELA [8], также может быть объяснено подобным процессом.

Была предпринята попытка объяснить годичную модуляцию сигнала, наблюдаемую в эксперименте DAMA/LIBRA, с помощью возбуждённой скрытой массы [9], полученные ограничения изображены на рисунке 2.

В рассматриваемой модели процесс первого порядка может иметь только неупругий характер, так как переносчик взаимодействия V осу-

ществляет переход между возбуждённым χ_2 и невозбуждённым χ_1 состояниями частиц скрытой массы.

Снятие возбуждения может происходить по нескольким каналам:

- при ΔE > 2m_e основным каналом снятия возбуждения является испускание электрон-позитронной пары. Из-за электромагнитного характера этого канала время жизни возбуждённых состояний оказывается много меньше времени жизни Вселенной. Следствием этого является малость доли частиц скрытой массы в возбуждённом состоянии;
- при $\Delta E < 2m_e$ преобладает снятие возбуждения с испусканием пары нейтрино-антинейтрино. Такой процесс носит слабый характер, поэтому ширина перехода частиц скрытой массы из возбуждённого состояния в основное $\Gamma_{\nu\nu} = 3 \times 10^{-48}$ ГэВ оказывается много меньше обратного времени жизни Вселенной $\tau_U^{-1} = 1.5 \times 10^{-42}$ ГэВ, и доля частиц, находящихся в возбуждённом состоянии, не обязана быть малой.

Рисунок 2 — Экспериментальные ограничения на сечение взаимодействия возбуждённой скрытой массы с нуклонами ядер мишени, полученные в различных экспериментах [9]

ЭКСПЕРИМЕНТ BOREXINO

Национальная Лаборатория Гран-Cacco (Laboratori Nazionali del Gran Sasso, LNGS) – самый большой в мире подземный международный научный комплекс, расположенный в Италии.

В LNGS проводятся эксперименты, посвящённые

- физике нейтрино: BOREXINO [10; 11], CUORE [12], GERDA [13];
- поиску скрытой массы: XENONnT [2], DarkSide [14];
- ядерной астрофизике.

Эксперимент BOREXINO (Борексино) – сцинтилляционный детектор, основное назначение которого – спектроскопия низкоэнергетичных солнечных нейтрино от рр-цепочки.

Исходно главной задачей эксперимента являлось измерение потока нейтрино от реакции захвата электрона ядром ⁷Ве, происходящей на Солнце [15]. Также с помощью детектора Борексино был обнаружен СNO-цикл термоядерных реакций, идущих на Солнце [16].

Борексино представляет собой внешний металлический резервуар, заполненный водой, и внутреннюю часть в виде концентрических двух нейлоновых и одной стальной сфер, радиусами 4.25, 5.50 и 6.85 метров соответственно (рисунок 3).

Мишень детектора, находящаяся во внутренней нейлоновой сфере, – 278 тонн жидкого органического сцинтиллятора, на основе псевдокумола (1,2,4-триметилбензол) $C_6H_3(CH_3)_3$ с добавлением 1.5 г/л 2,5-дифенилоксазола $C_{15}H_{11}NO$.

Рисунок 3 — Схема детектора Борексино

1 ОЖИДАЕМЫЙ ВИД ЭНЕРГЕТИЧЕСКОГО СПЕКТРА СОБЫТИЙ РАССЕЯНИЯ ВОЗБУЖДЁННОЙ СКРЫТОЙ МАССЫ

1.1 КИНЕМАТИКА РЕАКЦИИ. СИГНАТУРА СОБЫТИЯ В БОРЕКСИНО

Рассматриваемый процесс (рисунок 1.1) рассеяния является неупругим: при столкновении частицы скрытой массы с протоном мишени выделяется энергия ΔE . В данных Борексино необходимо искать одиночные протонные события.

Рисунок 1.1 — Схема процесса неупругого рассеяния частицы скрытой массы на протонах мишени и схема энергетических уровней возбуждения частиц скрытой массы, соответствующих процессу.

При рассмотрении кинематики процесса используются следующие условия:

• дифференциальное сечение реакции получено в первом борновском приближении;

- масса переносчика взаимодействия $m_V \sim 1 \ \Gamma \Im B$;
- масса частицы скрытой массы много больше массы протона $M \gg m$;
- начальная кинетическая энергия протона в лабораторной системе отсчёта много меньше энергии перехода частицы скрытой массы между состояниями $\frac{mv^2}{2} \ll \Delta E$.

В лабораторной системе отсчёта частица скрытой массы налетает на покоящийся протон со скоростью v, в то время как в системе центра инерции (СЦИ) из-за малости массы протона можно положить, что частица скрытой массы покоится, а протон налетает на неё с той же скоростью v, поэтому вся энергия возбуждённого состояния передаётся протону: $\Delta E = \frac{k_f^2}{2m}$

Начальный и конечный импульсы в системе центра инерции:

$$|\mathbf{k_i}| = mv$$
 $|\mathbf{k_f}| = \sqrt{2m\Delta E}$ (1.1)

Сечение рассеяния полагаем спин-независимым [7]:

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega_{\mathrm{CIIM}}} = \frac{\sigma_n |\mathbf{k}_{\mathbf{f}}|}{4\pi |\mathbf{k}_{\mathbf{i}}|} \frac{1}{(1 + (\frac{\mathbf{q}}{m_V})^2)^2}$$
(1.2)

Здесь σ_n – эффективное сечение рассеяния частиц скрытой массы на нуклоне, Ω_{CUU} – телесный угол в системе центра инерции, **q** – переданный 3-импульс.

В используемом приближении $|\mathbf{q}| \ll m_V$, поэтому знаменатель дроби можно положить равным единице. После подстановки значений импульсов (формула 1.1) в формулу 1.2 и интегрирования по азимутальному углу получаем

$$\frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\mathrm{CIIII}}} = \frac{\sigma_n}{2} \sqrt{\frac{2\Delta E}{mv^2}} \tag{1.3}$$

Энергия протона E_R измеряется в лабораторной системе отсчёта, поэтому необходимо совершить преобразования Лоренца:

$$p_{\perp} = k_f \sin \theta_{\text{СЦИ}} \tag{1.4}$$

$$p_{\parallel} = \gamma \left(k_f \cos \theta_{\text{СЦИ}} + v(\Delta E + m) \right) \simeq k_f \cos \theta_{\text{СЦИ}} + vm \tag{1.5}$$

Тогда

$$E_R = \frac{\mathbf{p}_{\perp}^2 + \mathbf{p}_{\parallel}^2}{2m} \simeq \Delta E + \sqrt{2mv^2 \Delta E} \cos \theta_{\text{СЦИ}}$$
(1.6)

В системе центра инерции $\cos \theta_{\text{СЦИ}} \in [-1; 1]$ или $\cos^2 \theta_{\text{СЦИ}} \leqslant 1$, откуда

$$v_{min} = \frac{|E_R - \Delta E|}{\sqrt{2m\Delta E}} \tag{1.7}$$

Полученное ограничение на скорость частиц будет использовано для расчёта спектра энергии отдачи протона.

1.2 РАСЧЁТ СПЕКТРА ЭНЕРГИИ ОТДАЧИ ПРОТОНА

Параметры модели, выбранные для расчёта:

- 1) масса частицы скрытой массы $M = 100 \ \Gamma \Im B;$
- 2) эффективное сечение рассеяния частицы скрытой массы на нуклоне $\sigma_n = 10^{-43} \text{ см}^2;$
- 3) плотность скрытой массы $ho_D = 0.4 \ \Gamma$ э $\mathrm{B/cm^3};$
- 4) доля частиц скрытой массы в возбуждённом состоянии F = 0.5;
- 5) масса сцинтиллятора-мишени $M_{sc} = 100$ тонн;
- 6) энергия возбуждённого состояния $\Delta E = 1$ МэВ.

Зависимость скорости счёта от энергии отдачи протона даётся формулой 1.8 [1]:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{N_T F \rho_D}{M} \int_{v_{min}}^{\infty} v f(v, v_{esc}) \mathrm{d}v \frac{\mathrm{d}\sigma}{\mathrm{d}E_R}$$
(1.8)

где R – скорость счёта событий, N_T – число протонов на единицу массы мишени, F – доля частиц скрытой массы, находящихся в возбуждённом состоянии, ρ_D – плотность частиц скрытой массы.

Из кинематики реакции получаем

$$\frac{\mathrm{d}\sigma}{\mathrm{d}E_R} = \frac{\mathrm{d}\sigma}{\mathrm{d}\cos\theta_{\mathrm{CIIII}}} \frac{\mathrm{d}\cos\theta_{\mathrm{CIIII}}}{\mathrm{d}E_R} = \frac{\sigma_n}{2mv^2} \tag{1.9}$$

Функция плотности распределения частиц скрытой массы по скоростям в системе покоя Земли в локальной области Млечного Пути имеет вид распределнения Максвелла, ограниченного скоростью $v_{esc} \simeq 550$ км/с [17]:

$$f(v, v_{esc}) = \begin{cases} \left(\frac{3-\frac{8}{\pi}}{\pi v_c^2}\right)^{\frac{3}{2}} 4\pi v^2 e^{-\frac{\left(3-\frac{8}{\pi}\right)v^2}{v_c^2}}, & \text{при } v < v_{esc} \\ 0, & \text{при } v > v_{esc} \end{cases}$$
(1.10)

Распределение Максвелла характеризуется одним параметром, который для скрытой массы принято обозначать $v_c \simeq 220$ км/с – скорость движения по круговой орбите в гравитационном поле Млечного Пути на расстоянии, равном расстоянию от Солнца до центра галактики [18]. Этот параметр характеризует дисперсию распределения: $\sigma_v = \frac{v_c}{\sqrt{2}} \simeq 150$ км/с, также можно получить выражение для средней скорости: $\langle v \rangle = \frac{\sigma_v}{\sqrt{3\pi/8-1}} \simeq$ 370 км/с, тогда средняя энергия частиц скрытой массы $\langle E_{kin} \rangle \simeq 60$ кэВ.

После взятия интеграла (формула 1.8) по скорости в формуле остаётся два слагаемых:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} = \frac{N_T F \rho_D \sigma_n}{2mM} \sqrt{\frac{\left(3 - \frac{8}{\pi}\right)}{\pi v_c^2}} \left(e^{-\frac{(E_R - \Delta E)^2 \left(3 - \frac{8}{\pi}\right)}{2v_c^2 m \Delta E}} - e^{-\frac{v_{esc}^2 \left(3 - \frac{8}{\pi}\right)}{v_c^2}} \right)$$
(1.11)

Вторым слагаемым можно пренебречь, тогда получим зависимость 1.12, изображённую на рисунке 1.2.

$$\frac{\mathrm{d}R}{\mathrm{d}E_R} \approx \frac{N_T F \rho_D \sigma_n}{2mM} \sqrt{\frac{\left(3-\frac{8}{\pi}\right)}{\pi v_c^2}} e^{-\frac{(E_R - \Delta E)^2 \left(3-\frac{8}{\pi}\right)}{2v_c^2 m \Delta E}} = A e^{-\frac{(E_R - \Delta E)^2}{2\sigma_1^2}} \tag{1.12}$$

Здесь введены обозначения $A = \frac{N_T F \rho_D \sigma_n}{2m M v_c} \sqrt{\frac{\left(3-\frac{8}{\pi}\right)}{\pi}}, \ \sigma_1^2 = \frac{\Delta E m v_c^2}{3-\frac{8}{\pi}}.$

Рисунок 1.2 — Рассчитанный спектр энергии отдачи протона

1.3 УЧЁТ КВЕНЧИНГ-ЭФФЕКТА

Квенчинг – эффект, возникающий в сцинттилляторах при регистрации заряженных частиц, сильно ионизирующих среду (протоны, альфа частицы), уменьшающий световыход сцинтилляционной вспышки. Следствием сцинтиляционного дефекта является нелинейная зависимость энергии световой вспышки в сцинтилляторе от энергии, потерянной заряженной частицей.

Для моделирования квенчинга в Борексино необходимы следующие параметры:

- коэффициент Биркса для протонов в детекторе Борексино $k_B = 0.0120 \frac{\text{см}}{\text{M} \rightarrow \text{B}} [19];$
- химический состав сцинтиллятора [20]: псевдокумол (PC)
 C₆H₃(CH₃)₃ с примесью 2,5-дифенилоксазола (PPO) C₁₅H₁₁NO в количестве 1.5 г/л;
- плотности используемых химических соединений: $\rho_{PC} = 0.8761 \frac{\Gamma}{\text{см}^3},$ $\rho_{PPO} = 1.094 \frac{\Gamma}{\text{см}^3};$
- средние потенциалы ионизации атомов водорода и углерода $\bar{I}_H = 13.5 \text{ эB}, \bar{I}_C = 64.5 \text{ эB} [21].$

Зависимость световыхода на единицу длины от удельных потерь энергии заряженной частицы даётся формулой [22]:

$$\frac{\mathrm{d}L}{\mathrm{d}x} = \frac{\frac{\mathrm{d}E}{\mathrm{d}x}}{1 + k_B \frac{\mathrm{d}E}{\mathrm{d}x}} \tag{1.13}$$

Где $\frac{dE}{dx}$ – удельные энергетические потери заряженной частицы в веществе, для нерелятивистских протонов определяемые по формуле Бете-Блоха [23; 24]:

$$\frac{\mathrm{d}E}{\mathrm{d}x} = -\frac{4\pi e^4 Z^2}{m_e v^2} \sum_A n_A Z_A \ln\left(\frac{2m_e v^2}{\bar{I}_A}\right) \tag{1.14}$$

Где Z = 1 – заряд протона, n_A – концентрация атомов элемента A, Z_A – порядковый номер элемента A, \bar{I}_A – средний потенциал ионизации элемента A, сумма берётся по всем элементам в веществе в котором заряженная частица теряет энергию.

Так как в детекторе Борексино используется органический сцинтиллятор, слагаемые, вносящие наибольший вклад в формулу 1.14, соответствуют водороду (наименьший потенциал ионизации) и углероду (наибольшая концентрация и большой заряд ядра).

Из формулы 1.13 следует формула для полной энергии световой вспышки при данной кинетической энергии протона:

$$E_{vis} = \int_{0}^{E_R} \frac{\mathrm{d}E}{1 + k_B \frac{\mathrm{d}E}{\mathrm{d}x}}$$
(1.15)

Численное вычисление интеграла для исследуемых кинетических энергий протона $E_{det} = 0.8 \div 1.2$ МэВ даёт зависимость квенчинг-фактора Q от энергии, потерянной протоном в детекторе, изображённую на рисунке 1.3. Для удобства дальнейшего использования, зависимость была фитирована формулой вида:

$$Q = \frac{E_{vis}}{E_R} = \frac{E_R}{aE_R + b} \tag{1.16}$$

Рисунок 1.3 — Расчитанный с использованием простой модели квенчингфактор (синие маркеры), фит зависимостью 1.16 (красная линия) и расчитанный с помощью Geant4 квенчинг-фактор (чёрные маркеры)

Для учёта квенчинга спектр необходимо преобразовать следующим образом:

$$\frac{\mathrm{d}R}{\mathrm{d}E_{vis}}(E_{vis}) = \frac{\mathrm{d}R}{\mathrm{d}E_R}(E_R(E_{vis})) \times \frac{\partial E_R}{\partial E_{vis}}(E_{vis})$$
(1.17)

Из формулы 1.16 можно получить

$$E_R(E_{vis}) = \frac{1}{2} \left(aE_{vis} + \sqrt{a^2 E_{vis}^2 + 4bE_{vis}} \right)$$
(1.18)

$$\frac{\partial E_R}{\partial E_{vis}}(E_{vis}) = \frac{a}{2} + \frac{a^2 E_{vis} + 2b}{2\sqrt{a^2 E_{vis}^2 + 4bE_{vis}}}$$
(1.19)

После преобразования получаем изображённый на рисунке 1.4 спектр энергии сцинтилляционной вспышки, порождаемой протонами отдачи.

Рисунок 1.4 — Спектр энергии сцинтилляционной вспышки, порождаемой протонами отдачи

1.4 УЧЁТ РАЗРЕШЕНИЯ ДЕТЕКТОРА

Для учёта разрешения детектора Борексино, нужно ввести функцию отклика детектора – вероятность передачи чувствительному объёму детектора энергии *E* при попадании в него частицы с энергией *E*'.

Для детектора Борексино функция отклика детектора имеет вид функции Гаусса [19]:

$$G(E_{det}, E_{vis}) = \frac{1}{\sqrt{2\pi\sigma_0}} e^{-\frac{(E_{det} - E_{vis})^2}{2\sigma_0^2}}$$
(1.20)

где $\sigma_0 = 0.06\sqrt{E_{det}}$, где энергия выражена в МэВ, то есть для частицы с энергией 1 МэВ относительное энергетическое разрешение составляет 6%.

Спектр событий с учётом разрешения детектора даётся формулой

$$\frac{\mathrm{d}R}{\mathrm{d}E_{det}} = \int_{E_{vis\,min}}^{E_{vis\,max}} \frac{\mathrm{d}R}{\mathrm{d}E_{vis}} G(E_{det}, E_{vis}) \mathrm{d}E_{vis} = \int_{0}^{\infty} \frac{\mathrm{d}R}{\mathrm{d}E_{vis}} G(E_{det}, E_{vis}) \mathrm{d}E_{vis} \quad (1.21)$$

Чтобы сравнить получающиеся зависимости, построим их на одном графике. Как видно из рисунка 1.5, учёт квенчинга сдвигает спектр в область низких энергий, а учёт разрешения детектора увеличивает диспер-

Рисунок 1.5 — Теоретические спектры событий энергии отдачи протона (синий), энергии сцинтилляционной вспышки с учётом квенчинга (красный) и энергии, регистрируемой детектором с учётом его энергетического разрешения (чёрный)

Совокупность влияний квенчинга, имеющего нелинейную зависимость от энергии отдачи протона, и энергетического разрешения детектора Борексино, зависящего от энергии события, приводит к изменению формы итогового спектра на несимметричную (рисунок 1.6).

Нижний энергетический порог срабатывания триггера в Борексино: 0.2 МэВ, поэтому не весь энергетический спектр попадает в область исследуемых детектором энергий. Интегрирование спектра показывает, что в область энергий (0.2; 0.3) МэВ попадает 45% спектра.

При используемых значениях параметров модели возбуждённой скрытой массы полная ожидаемая скорость счёта:

$$R_{\rm CHF} = 21.0 \pm 0.4 \ (\text{CHCT}) \ \text{fog}^{-1} \times \left(\frac{\rho_D}{0.4 \ \Gamma \text{\ImB/cM}^3}\right) \times \left(\frac{F}{0.5}\right) \times \\ \times \left(\frac{\sigma_n}{10^{-43} \ \text{cM}^2}\right) \times \left(\frac{M_{sc}}{100 \ \text{TOHH}}\right) \times \left(\frac{M}{100 \ \Gamma \text{\ImB}}\right)^{-1}$$
(1.22)

Рисунок 1.6 — Спектр энергии искомых событий (чёрная сплошная линия), энергетический порог детектора Борексино (красная пунктирная линия)

1.5 ИССЛЕДОВАНИЕ ЗАВИСИМОСТИ СПЕКТРА ОТ ПАРАМЕТРА ΔE

Рассчитанный энергетический спектр имеет сложную, в отличие от других параметров модели, зависимость от энергии ΔE , высвобождаемой частицей скрытой массы при снятии возбуждения. Эта зависимость следует из эффекта квенчинга и имеет вид, представленный на рисунке 1.7. Также на рисунке отмечен энергетический порог детектора Борексино $E_{min} = 0.2$ МэВ.

Рисунок 1.7 — Завимость вида энергетического спектра от энергии возбуждённого состояния ΔE

Поиск событий-кандидатов возможен, если часть спектра лежит в исследуемой детектором области $E_{det} > 0.2$ МэВ. Такая граница по энергии регистрируемого события соответствует значению парамера $\Delta E \sim 0.7$ МэВ.

Значение параметра	Скорость счёта в интервале	Доля от полной
ΔE , MəB	энергий (0.2; 0.3) МэВ, год ⁻¹	скорости счёта, %
0.70	$(5.6 \pm 0.1) \times 10^{-2}$	0.1
0.75	$(2.39 \pm 0.05) \times 10^{-1}$	0.6
0.80	$(8.5 \pm 0.2) \times 10^{-1}$	2.0
0.85	2.49 ± 0.05	5.7
0.90	6.1 ± 0.1	14
0.95	12.3 ± 0.2	27
1.00	21.0 ± 0.4	45

Таблица 1.1 — Ожидаемые скорости счёта событий в зависимости от параметра ΔE при значениях остальных параметров взятых как в разделе 1.2

2 АНАЛИЗ ФОНОВЫХ ПРОЦЕССОВ

2.1 РАСПАДЫ²³⁸U И²³²TH

Во всех материалах детектора присутствуют примеси ²³⁸U и ²³²Th, порождающие фон в виде α -распадов. В данной работе необходимо учитывать только примеси непосредственно сцинтиллятора. Благодаря очистке сцинтиллятора, детектор Борексино достиг высокого уровня радиочистоты: менее 9.4 ×10⁻²⁰ граммов ²³⁸U и менее 5.7 ×10⁻¹⁹ граммов ²³²Th на 1 грамм сцинтиллятора [25].

Для расчёта квенчинг-факторов α -частиц от распадов ²³⁸U и ²³²Th воспользуемся данными калибровок энергетической шкалы Борексино для α -частиц (таблица 2.1). Затем необходимо фитировать эти данные зависимостью 1.16 того же вида, что была использована для протонов, и экстраполировать эту зависимость на энергии α -частиц от ²³⁸U и ²³²Th. Результаты такого подхода представлены на рисунке 2.1 и в таблице 2.2.

Иролон	Энергия	Квенчинг-	Энергия сцинтилляцинной
11301011	α -частицы, МэВ	фактор	вспышки, МэВ
²¹⁰ Po	5.31	0.079	0.42
222 Rn	5.49	0.082	0.45
²¹⁸ Po	6.00	0.089	0.53
220 Rn	6.29	0.089	0.56
²¹⁶ Po	6.78	0.099	0.67
214 Po	7.69	0.109	0.84
212 Po	8.78	0.125	1.10

Таблица 2.1 — Наблюдаемые энергии и квенчинг-факторы различных изотопов, исследованных в Борексино [19]

Для известной массы сцинтиллятора (для расчётов используется $M_{sc} = 100$ тонн), зная периоды полураспада изотопов урана и тория [26], можно рассчитать число распадов в единицу времени. С учётом энергетическо-

го разрешения детектора, энергетические спектры событий от α -распадов изотопов урана и тория будут иметь вид, показанный на рисунке 2.2.

Рисунок 2.1 — Зависимость энергии сцинтилляционной вспышки от энергии гии α-частицы (красная сплошная линия), экстраполированная на энергии α-частиц от распадов урана и тория (чёрная пунктирная линия)

Иротон	Энергия	Интенсивность	Энергия сцинтилляционной
ИЗОТОП	α -частицы, МэВ	линии, %	вспышки, МэВ
23811	4.04	21	0.26
U	4.15	79	0.27
²³² Th	3.95	22	0.24
	4.01	78	0.24

Таблица 2.2 — Энергии α-частиц и сцинтилляционных вспышек для изотопов урана и тория [26]

В интервале энергий (0.2; 0.3) МэВ лежит 0.86 ± 0.01 (сист) энергетического спектра ²³⁸U и 0.89 ± 0.01 (сист) энергетического спектра ²³²Th. При этом скорости счёта событий:

$$R_U = 4.6 \pm 0.1 \text{ (сист) } \text{год}^{-1} \times \left(\frac{M_{sc}}{100 \text{ тонн}}\right)$$

$$R_{Th} = 9.7 \pm 0.1 \text{ (сист) } \text{год}^{-1} \times \left(\frac{M_{sc}}{100 \text{ тонн}}\right)$$
(2.1)

Рисунок 2.2 — Энергетические спектры событий от *α*-распадов изотопов урана (зелёный) и тория (красный) и их сумма (чёрный)

2.2 РАСПАД ²¹⁰РО

Другой значимый источник фоновых событий – α -распад ²¹⁰Po – описан в [20]. Цепочка 2.2 распада ²¹⁰Pb является частью цепочки распада ²³⁸U, однако основной источник ²¹⁰Po в сцинтилляторе детектора не ²³⁸U, а его дочерний изотоп ²²²Rn, обладающий высокой диффундирующей способностью. Изотоп ²²²Rn проникает в материалы детектора извне, поэтому событий, связанных с порождаемым этим изотопом распадами ²¹⁰Po, больше всего около границ объёма детектора и в нижней его части.

²¹⁰Pb
$$\xrightarrow{\beta}$$
 ²¹⁰Bi $\xrightarrow{\beta}$ ²¹⁰Po $\xrightarrow{\alpha}$ ²⁰⁶Pb (2.2)

Первоначально из-за отстутствия у детектора Борексино теплоизоляции и активного контроля температуры в сцинтилляторе возникали конвективные потоки, которые распространяли тяжёлые радиоактивные изотопы по всему объёму сцинтиллятора.

Для устранения фона от цепочки распада ²¹⁰Pb в 2015-2016 годах была установлена система теплоизоляции и активного контроля температуры [27] (рисунок 2.3). Она обеспечила постоянный градиент температур и минимизировала распространение тяжёлых радиоактивных изотопов в объём сцинтиллятора. Исследования, проведённые в рамках решения задачи поиска CNO-нейтрино от Солнца, показали, что в центре детектора существует область с низким содержанием полония (Low Polonium Field, LPoF). Зависимость скорости счёта событий α -распадов ²¹⁰Po от выбираемого чувствительного объёма сложная, но при малых объёмах близких к центру детектора эта зависимость близка к линейной.

Рисунок 2.3 — Внешний водный резервуар детектора Борексино после установки теплоизоляции и системы активного контроля температуры [16]

Скорости счёта событий ²¹⁰Ро для разных временных промежутков:

- до 2016 года: 260 событий в день на 100 тонн сцинтиллятора [25];
- после 2016 года: 11.5 событий в день на 100 тонн сцинтиллятора [16].

Так как ²¹⁰Ро испытывает α -распад, энергия вылетающей α -частицы фиксирована: $E_{\alpha} = 5.3$ МэВ. Однако для расчёта фона необходимо учесть квенчинг и энергетическое разрешение детектора. Квенчинг-фактор для α -частиц в Борексино был экспериментально определён для распадов некоторых известных радиоактивных изотопов (таблица 2.1).

С учётом энергетического разрешения детектора Борексино (раздел 1.4), получен энергетический спектр событий ²¹⁰Ро, изображённый на рисунке 2.4.

Рисунок 2.4 — Ожидаемый спектр энергии фоновых событий ²¹⁰Ро

Тогда в область исследуемых энергий (0.2; 0.3) МэВ попадает 0.1% событий ²¹⁰Ро, а скорость счёта таких событий:

$$R_{Po} = 4.3 \text{ год}^{-1} \times \left(\frac{M_{sc}}{100 \text{ тонн}}\right)$$
 (2.3)

2.3 ДРУГИЕ ИСТОЧНИКИ ФОНА

Кроме *α*-распадов, возможно появление событий, связанных с протонами отдачи от упругих рассеяний атмосферных нейтрино и быстрых нейтронов на протонах мишени.

2.3.1 АТМОСФЕРНЫЕ НЕЙТРИНО

Из кинематики упругого рассеяния нейтрино на протонах можно получить связь между энергией налетающего нейтрино и максимальной конечной кинетической энергией протона, что соответствует рассеянию нейтрино назад.

$$E_R^{max} = \frac{2E_{\nu}^2}{m_p + 2E_{\nu}} \simeq \frac{2E_{\nu}^2}{m_p}$$
(2.4)

Из этой формулы можно выразить энергию нейтрино, получив таким

образом минимальную энергию налетающего нейтрино, необходимую для образования протона с данной кинетической энергией.

$$E_{\nu}^{min}(E_R) = \frac{E_R + \sqrt{E_R(E_R + 2m_p)}}{2} \simeq \sqrt{\frac{E_R m_p}{2}}$$
(2.5)

Для исследуемых кинетических энергий протонов $E_R \in (0.5; 1.5)$ МэВ минимальные энергии нейтрино имеют значения $E_{\nu}^{min} \sim 15$ МэВ.

В отличие от солнечных нейтрино, для которых существует верхняя граница по энергиям ~ 18 МэВ [28], атмосферные нейтрино, порождаемые распадами космических лучей в атмосфере, имеют энергетический спектр, неограниченный сверху. Расчёт энергетического спектра атмосферных нейтрино для малых энергий был выполнен в [29], энергетические спектры изображены на рисунке 2.5.

Рисунок 2.5 — Энергетические спектры атмосферных нейтрино

Для оценки скорости счёта событий от рассеяния атмосферных нейтрино на протонах сцинтиллятора, необходима формула дифференциального сечения упругого рассеяния нейтрино на протонах [30], которая для передаваемых 4-импульсов, меньших массы Z-бозона, упрощается:

$$\frac{\mathrm{d}\sigma_{\nu p}}{\mathrm{d}E_R} = \frac{G_F^2 m_p}{2\pi E_\nu^2} ((c_V + c_A)^2 E_\nu^2 + (c_V - c_A)^2 (E_\nu - E_R)^2 - (c_V^2 - c_A^2) m_p E_R) \quad (2.6)$$

Тогда спектр кинетической энергии протона от упругого рассеяния

атмосферных нейтрино даётся формулой:

$$\frac{\mathrm{d}R}{\mathrm{d}E_R}(E_R) = N_p \int_{E_\nu^{min}(E_R)}^{+\infty} \frac{\mathrm{d}j}{\mathrm{d}E_\nu}(E_\nu) \frac{\mathrm{d}\sigma_{\nu p}}{\mathrm{d}E_R}(E_R, E_\nu) \mathrm{d}E_\nu$$
(2.7)

Где $N_p = 6 \times 10^{30}$ – число протонов на 100 тонн сцинтиллятора.

Затем для получения спектра энергии регистрируемых событий необходимо учесть квенчинг и разрешение детектора, как это было сделано для спектра кинетической энергии протонов отдачи для рассеяния частиц скрытой массы на протонах (см. 1.4,1.5).

Численное интегрирование спектра в пределах $E_{det} \in (0.2; 0.3)$ МэВ даёт скорость счёта

$$R_{\nu} = 1.2 \times 10^{-3} \text{ rog}^{-1} \times \left(\frac{M_{sc}}{100 \text{ тонн}}\right).$$
 (2.8)

Ожидаемый сигнал от атмосферных нейтрино на 3 порядка меньше, чем ожидаемый сигнал событий, связанных с α-распадами, поэтому в дальнейшем им можно пренебречь.

2.3.2 БЫСТРЫЕ НЕЙТРОНЫ

Космические мюоны порождают быстрые космогенные нейтроны с энергиями до нескольких ГэВ. Такие нейтроны могут попасть в детектор и упруго рассеяться на протонах мишени, создавая фоновую компоненту, совпадающую по сигнатуре с искомым сигналом.

Однако наложение временного вето длительностью 2 секунды после регистрации мюона оставляет лишь 0.05% от всего фона быстрых нейтронов [31], что составляет $\approx 5.1 \times 10^{-2}$ событий/год на 100 тонн сцинтиллятора, поэтому фоном быстрых нейтронов можно пренебречь, по сравнению с фоном α -распадов.

2.4 СУММАРНЫЙ ОЖИДАЕМЫЙ ФОН

Учитывая значимые составляющие фона, представленные в разделах 2.1 и 2.2 получим

$$R_{\Phi} = R_{Po} + R_U + R_{Th} = 18.5 \pm 0.2 \text{ (сист) } \text{год}^{-1} \times \left(\frac{M_{sc}}{100 \text{ тонн}}\right).$$
(2.9)

З АНАЛИЗ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ БОРЕКСИНО

3.1 ПАРАМЕТР ГАТТИ

Поиск протонов отдачи существенно облегчает отбор событий, так как тяжёлые заряженные частицы, лёгкие заряженные частицы и нейтральные частицы можно различить по форме импульса от соответствующих сцинтилляционных вспышек.

Параметр Гатти – параметр формы импульса электрического сигнала, возникающего в детекторе при прохождении через него элементарной частицы [32].

По известным формам импульса от интересующих частиц, определяются нормированные числа фотонов α_i, β_i , регистрируемые детектором в i-том промежутке времени (бине) электрического сигнала. Затем вычисляются значения весов (формула 3.1).

$$P_i = \frac{\alpha_i - \beta_i}{\alpha_i + \beta_i} \tag{3.1}$$

По значениям весов и нормированным числам s_i фотонов в i-том промежутке времени для исследуемого импульса вычисляется значение параметра Гатти

$$G = \sum_{i} P_i s_i \tag{3.2}$$

Так как знак весов определяется типом частицы, то значение параметра Гатти тоже будет зависеть от типа частицы. Для α-частиц среднее значение параметра Гатти больше 0, для импульсов от электронов среднее значение меньше 0. Таким образом, параметр Гатти можно использовать для отделения событий-кандидатов от электронного фона. Протон, как и α -частицы, является тяжёлой заряженной частицей, поэтому среднее значение параметра Гатти для протонов тоже > 0.

Для оценки значения параметра Гатти G₀, который будет использоваться в отборе, был произведён анализ данных за 2007-2016 гг. (время набора данных: 1010 дней). Гистограмма распределения событий по параметру Гатти была фитирована двойным распределением Гаусса (рисунок 3.1). Затем были вычислены доли электронных (β) и α -событий с параметром Гатти больше G₀ (таблица 3.1).

Рисунок 3.1 — Распределение событий по параметру Гатти

Параметр	Доля отброшенных	Доля оставшихся
отбора G_0	eta-событий, $%$	lpha-событий, $%$
-0.01	93	100
0	99	97
0.01	100	87
0.02	100	66
0.03	100	38

Таблица 3.1 — Зависимость числа отброшенных событий и числа отобранных событий от значения параметра отбора G_0

В дальнейшем для отбора выбрано значение параметра $G_0 = 0.02$, поэтому необходимо скорости счёта событий кандидатов и фонов умножить на долю событий, проходящих отбор: $\epsilon_{Gatti} = 0.66 \pm 0.01$ (сист).

3.2 ЧУВСТВИТЕЛЬНЫЙ ОБЪЁМ

Чтобы подтвердить уменьшение скорости счёта фоновых событий распада изотопа ²¹⁰Ро после установки системы терморегулирвки, был произведён анализ данных двух временных отрезков: 2009-2016 гг. (живое время набора данных: 1569 дней) и 2016-2019 гг. (живое время набора данных: 970 дней). Были построены гистограммы распределений событий по параметру Гатти для двух временных промежутков. Из рисунка 3.2 видно, что счёт событий с положительным средним параметром Гатти уменьшился.

Затем для использования свойств области низкого содержания полония (LPoF) был произведён дополнительный отбор событий по координатам. Критерий отбора: событие должно находиться не расстоянии не более чем 1 метр от центра детектора (рисунок 3.3). Такой выбор чувствительного объёма позволяет взять минимальное значение скорости счёта событий α -распадов полония из [16] и использовать приближение равномерного распределения этих событий в пространстве. Тогда масса сцинтиллятора, используемая для вычисления скоростей счёта событий-кандидатов и фоновых событий, принимает значение M_{sc} = 3.7 тонн.

Рисунок 3.2 — Распределения событий по параметру Гатти для набора данных слева за 2009-2016 гг. (1010 дней) и справа за 2016-2019 гг. (970 дней)

3.3 ОБЩИЕ КРИТЕРИИ ОТБОРА

Общие критерии отбора событий-кандидатов:

- параметр Гатти события кандидата > 0.02 (раздел 3.1);
- событие-кандидат находится в выбранном чувствительном объёме (раздел 3.2);
- мюонное вето 2 с (отбрасывание событий, находящихся во временном окне длительностью 2 с после регистрации мюона);
- событие-кандидат не должно быть шумом электроники;
- тип триггера 1;
- событие-кандидат должно иметь один кластер;

Выбор нижней границы энергетического диапазона продиктован энергетическим порогом эффективности триггера детектора Борексино 0.2 МэВ. Верхняя граница может быть выбрана исходя из вида рассчитанного энергетического спектра событий-кандидатов и фоновых событий. Спектры фоновых событий распада ²³²Th и ²³⁸U имеют средние значения 0.24 и 0.27 МэВ соответственно и дисперсии 0.03 МэВ, поэтому отбросить их невозможно в независимости от выбора верхней границы исследуемого интервала энергий. Спектр событий распада ²¹⁰Po имеет среднее значение 0.42 МэВ и дисперсию 0.04 МэВ. Тогда при выборе верхней границы 0.3 МэВ фоновые события ²¹⁰Po будут отброшены на уровне 3σ .

Полное время сбора данных составило 1015 дней, мёртвое время, связанное с мюонным вето: 45 дней, т. е. живое время сбора данных: 970 дней. Результат отбора: в выбранном интервале энергий (0.2; 0.3) МэВ было отобрано $N_{
m эксп} = 1$ событие-кандидат.

3.4 ОГРАНИЧЕНИЕ НА ПОТОК ЧАСТИЦ ВОЗБУЖДЁННОЙ СКРЫТОЙ МАССЫ

Используя вычисленные ранее скорости счёта фоновых и сигнальных событий (формулы 1.22, 2.9), а также время сбора данных (970 дней) и выбранные критерии отбора, можно рассчитать ожидаемое число фоновых (формула 3.3) и сигнальных (формула 3.4) событий.

$$N_{\Phi} = 1.20 \pm 0.02$$
 (сист) событий (3.3)

$$N_{\rm CMT} = 1.36 \pm 0.03 \ ({\rm сист}) \ {\rm coбытий} \times \left(\frac{\rho_D}{0.4 \ {\rm \Gamma \ni B/cm}^3}\right) \times \\ \times \left(\frac{F\sigma_n}{0.5 \cdot 10^{-43} \ {\rm cm}^2}\right) \times \left(\frac{M}{100 \ {\rm \Gamma \ni B}}\right)^{-1}$$
(3.4)

Используя принцип, описанный в [33], и зная ожидаемый фон и измеренное количество событий, можно определить доверительный интервал (в общем случае) или верхний предел количества событий для данного уровня достоверности. Тогда для $N_{\rm \phi} = 1.2$, $N_{\rm эксп} = 1$ событие и уровня достоверности 90% получаем верхний предел:

$$N_{90} = 3.17 \pm 0.02$$
 (сист) событий. (3.5)

Поток частиц возбуждённой скрытой массы можно вычислить по формуле

$$j = \langle v \rangle n \tag{3.6}$$

Здесь $\langle v \rangle = 370 \text{ км/c} = 3.7 \cdot 10^7 \text{ см/c} - \text{средняя скорость (см 1.2), n} = \frac{\rho_D}{M} -$ концентрация частиц скрытой массы.

Для значений $ho_D=0.4~\Gamma$ э $\mathrm{B/cm^3}$ и F =0.5 из неравенства

$$N_{\rm CMF} \le N_{90} \tag{3.7}$$

можно выразить верхний предел на поток частиц возбуждённой скрытой массы, причём он не зависит от массы M самих частиц.

$$j_{90} \le (4.3 \pm 0.1 \text{ (сист)}) \cdot 10^5 \text{ c}^{-1} \text{ cm}^{-2} \times \left(\frac{\sigma_n}{10^{-43} \text{ cm}^2}\right)^{-1}$$
 (3.8)

Полученный верхний предел изображен на рисунке 3.3.

Поток частиц возбуждённой скрытой массы можно перевести в энергетический поток, имеющий зависимость от массы частиц:

$$\mathcal{J}_{90} = M j_{90} \tag{3.9}$$

Рисунок 3.3 — Верхний предел на поток частиц возбуждённой скрытой массы при уровне достоверности 90%

Тогда ограничение на энергетический поток скрытой массы даётся формулой 3.10 и изображено на рисунке 3.4

$$\mathcal{J}_{90} \le (4.3 \pm 0.1 \text{ (сист)}) \cdot 10^5 \text{ }\Gamma \text{эB c}^{-1} \text{ cm}^{-2} \times M \times \left(\frac{\sigma_n}{10^{-43} \text{ cm}^2}\right)^{-1} \quad (3.10)$$

Рисунок 3.4 — Верхний предел энергетического потока возбуждённой скрытой массы при уровне достоверности 90%

Из неравенства 3.7 также можно вывести ограничение на эффективное сечение взаимодействия частицы скрытой массы с нуклоном σ_n в зависимости от массы М частиц скрытой массы, если снова фиксировать значение плотности скрытой массы $\rho_D = 0.4 \ \Gamma$ эВ/см³ и долю частиц скрытой массы, находящихся в возбуждённом состоянии F = 0.5.

$$(\sigma_n)_{90} \le (2.4 \pm 0.1 \text{ (сист)}) \cdot 10^{-43} \text{см}^2 \times \left(\frac{M}{100 \text{ }\Gamma \Im \text{B}}\right)$$
 (3.11)

Вид зависимости 3.11 представлен на рисунке 3.5.

Рисунок 3.5 — Верхний предел эффективного сечения взаимодействия σ_n частиц скрытой массы с нуклонами для уровня достоверности 90%

Экспериментальные результаты поиска возбуждённой скрытой массы принято представлять в виде кривой или области в фазовом пространстве ΔE и σ_n . Используя данные таблицы 1.1, для интервала энергий возбуждения $\Delta E \in (0.7; 1.0)$ МэВ и массы частиц М = 120 ГэВ получим зависимость, изображённую на рисунке 3.6 вместе с результатами других экспериментов (XENON, CDMS, CRESST, DAMA/LIBRA).

Полученный в данной работе результат дополняет исследования, проведённые в рамках других экспериментов: изучена иная область параметров (ΔE ; σ_n). Как видно из рисунка 3.6, есть указания для поиска возбуждённой скрытой массы с энергией возбуждения в промежутке (0.15; 0.70) МэВ. Эта задача может быть решена с помощью других детекторов, чувствительных к возбуждённой скрытой массе в таком интервале энергий возбуждения.

Рисунок 3.6 — Ограничения на параметры ($\Delta E; \sigma_n$), полученные для массы частиц скрытой массы M = 100 ГэВ в экспериментах CDMS (чёрная линия из точек), CRESST (чёрная пунктирная линия), XENON (чёрная линия мелким пунктиром), DAMA/LIBRA (красная линия) [9] и в этой работе (синяя линия)

4 ЗАКЛЮЧЕНИЕ

В ходе проведённых исследований получены следующие основные результаты:

- рассмотрена модель возбуждённой скрытой массы с набором параметров (раздел 1.2);
- произведён расчёт ожидаемого энергетического спектра событий от взаимодействия частиц возбуждённой скрытой массы с протонами мишени детектора Борексино (рисунок 1.6) и рассчитана ожидаемая скорость счёта (формула 1.22) событий для выбранных значений параметров модели (раздел 1.2);
- для уровня достоверности 90% получены верхние пределы потока частиц (рисунок 3.3) и энергетического потока (рисунок 3.4) возбуждённой скрытой массы, а также верхние пределы эффективного сечения σ_n взаимодействия частиц возбуждённой скрытой массы с нуклонами в зависимости от массы M частицы при фиксированном значении $\Delta E = 1$ MэB (рисунок 3.5) и от энергии возбуждения ΔE при фиксированном значении массы частицы M = 120 ГэB (рисунок 3.6).

Получены результаты в неисследованной другими экспериментами области параметров (ΔE ; σ_n), дополняющие исследования, проведённые на других детекторах и указывающие на возможность поиска возбуждённой скрытой массы с энергией возбуждения в интервале (0.15; 0.70) МэВ.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Review of Particle Physics / P. D. Group [et al.] // Progress of Theoretical and Experimental Physics. — 2022. — Vol. 2022, no. 8. — ISSN 2050-3911. — eprint: https://academic.oup.com/ptep/articlepdf/2022/8/083C01/49175539/ptac097.pdf; — 083C01.
- First Dark Matter Search with Nuclear Recoils from the XENONnT Experiment / E. Aprile [et al.] // arXiv preprint arXiv:2303.14729. — 2023.
- The INTEGRAL mission / Winkler, C. [et al.] // A&A. 2003. Vol. 411, no. 1. — P. L1–L6.
- The PAMELA experiment in space / V. Bonvicini [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 2001. — Vol. 461, no. 1. — P. 262–268. — ISSN 0168-9002. — 8th Pisa Meeting on Advanced Detectors.
- Finkbeiner D. P., Weiner N. Exciting dark matter and the INTE-GRAL/SPI 511 keV signal // Phys. Rev. D. — 2007. — Vol. 76, issue 8. — P. 083519.
- Inelastic dark matter in light of DAMA/LIBRA / S. Chang [et al.] // Phys. Rev. D. — 2009. — Vol. 79, issue 4. — P. 043513.
- Batell B., Pospelov M., Ritz A. Direct detection of multicomponent secluded WIMPs // Phys. Rev. D. — 2009. — Vol. 79, issue 11. — P. 115019.
- An anomalous positron abundance in cosmic rays with energies 1.5– 100 GeV / O. Adriani [et al.] // Nature. — 2009. — Vol. 458, no. 7238. — P. 607–609. — ISSN 1476-4687.

- 9. Inelastic dark matter in light of DAMA/LIBRA / S. Chang [et al.] // Physical Review D. — 2009. — Vol. 79, no. 4. — P. 043513.
- Borexino / G. Ranucci [et al.] // Nuclear Physics B Proceedings Supplements. 2001. Vol. 91, no. 1. P. 58–65. ISSN 0920-5632. Neutrino 2000.
- Science and technology of Borexino: a real-time detector for low energy solar neutrinos / G. Alimonti [et al.] // Astroparticle Physics. 2002. Vol. 16, no. 3. P. 205–234. ISSN 0927-6505.
- Status and prospects for CUORE / L. Canonica [et al.] // Journal of Physics: Conference Series. — 2017. — Vol. 888, no. 1. — P. 012034.
- 13. The GERmanium Detector Array (Gerda) for the search of neutrinoless $\beta\beta$ decays of 76Ge at LNGS / S. Schönert [et al.] // Nuclear Physics B Proceedings Supplements. 2005. Vol. 145. P. 242–245. ISSN 0920-5632. NOW 2004.
- 14. Low-Mass Dark Matter Search with the DarkSide-50 Experiment / P. Agnes [et al.] // Phys. Rev. Lett. 2018. Vol. 121, issue 8. P. 081307.
- Precision Measurement of the ⁷Be Solar Neutrino Interaction Rate in Borexino / G. Bellini [et al.] // Phys. Rev. Lett. — 2011. — Vol. 107, issue 14. — P. 141302.
- Experimental evidence of neutrinos produced in the CNO fusion cycle in the Sun / M. Agostini [et al.] // Nature. — 2020. — Vol. 587, no. 7835. — P. 577–582. — ISSN 1476-4687.
- 17. The RAVE survey: the Galactic escape speed and the mass of the Milky Way / Piffl, T. [et al.] // A & A. 2014. Vol. 562. A91.
- THE MILKY WAY'S CIRCULAR-VELOCITY CURVE BETWEEN 4 AND 14 kpc FROM APOGEE DATA / J. Bovy [et al.] // The Astrophysical Journal. — 2012. — Vol. 759, no. 2. — P. 131.
- Final results of Borexino Phase-I on low-energy solar neutrino spectroscopy / G. Bellini [et al.] // Physical Review D. 2014. Vol. 89, no. 11. P. 112007.

- 20. The Borexino detector at the Laboratori Nazionali del Gran Sasso / G. Alimonti [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. — 2009. — Vol. 600, no. 3. — P. 568–593. — ISSN 0168-9002.
- Lotz W. Ionization potentials of atoms and ions from hydrogen to zinc // JOSA. — 1967. — Vol. 57, no. 7. — P. 873–878.
- Birks J. B. Scintillations from organic crystals: specific fluorescence and relative response to different radiations // Proceedings of the Physical Society. Section A. — 1951. — Vol. 64, no. 10. — P. 874.
- 23. Bethe H. On the theory of the passage of rapid charged particle radiation through matter // Annalen der Physik. 1930. T. 5, № 3. C. 325—400.
- 24. Bloch F. Bremsvermögen von Atomen mit mehreren Elektronen // Zeitschrift für Physik. — 1933. — T. 81, № 5/6. — C. 363—376.
- 25. Comprehensive measurement of pp-chain solar neutrinos // Nature. 2018. Vol. 562, no. 7728. P. 505–510.
- 26. *Katakura J.-i.*, *Minato F.* JENDL decay data file 2015. Nihon Genshiryoku Kenkyū Kaihatsu Kikō, 2016.
- 27. The Borexino Thermal Monitoring & Management System and simulations of the fluid-dynamics of the Borexino detector under asymmetrical, changing boundary conditions / D. Bravo-Berguño [et al.] // Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 2018. Vol. 885. P. 38–53.
- Bahcall J. N. Neutrino astrophysics. Cambridge University Press, 1989.
- 29. The atmospheric neutrino flux below 100 MeV: The FLUKA results / G. Battistoni [et al.] // Astroparticle Physics. 2005. Vol. 23, no. 5. P. 526–534.
- 30. Weinberg S. Effects of a neutral intermediate boson in semileptonic processes // Physical Review D. 1972. Vol. 5, no. 6. P. 1412.

- 31. Comprehensive geoneutrino analysis with Borexino / M. Agostini [et al.] // Physical Review D. 2020. Vol. 101, no. 1. P. 012009.
- 32. *Gatti E., Martini F. D.* A new linear method of discrimination between elementary particles in scintillation counters. — International Atomic Energy Agency (IAEA) : Brueder Rosenbaum, 1962. — INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY.
- Feldman G. J., Cousins R. D. Unified approach to the classical statistical analysis of small signals // Phys. Rev. D. — 1998. — Vol. 57, issue 7. — P. 3873–3889.