МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

УДК 531.3, 539.1.05

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К БАКАЛАВРСКОЙ ДИПЛОМНОЙ РАБОТЕ КОСМОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ СОСТОЯНИЙ, ОБРАЗУЕМЫХ ТЯЖЕЛЫМИ СТАБИЛЬНЫМИ КВАРКАМИ

Студент	К. Ю. Массалов
Научный руководитель,	

проф., д.ф.-м.н.

_____ М. Ю. Хлопов

ВЫПУСКНАЯ КВАЛИФИКАЦИОННАЯ РАБОТА БАКАЛАВРА

КОСМОЛОГИЧЕСКАЯ ЭВОЛЮЦИЯ СОСТОЯНИЙ, ОБРАЗУЕМЫХ ТЯЖЕЛЫМИ СТАБИЛЬНЫМИ КВАРКАМИ

Студент	К. Ю. Массалов
Научный руководитель,	
д.фм.н., проф.	М. Ю. Хлопов
Рецензент,	
к.фм.н., доц.	А. Г. Майоров
Секретарь ГЭК,	
к.фм.н.	А. А. Кириллов
Зав. каф. №40,	
д.фм.н., проф.	М. Д. Скорохватов

СОДЕРЖАНИЕ

	Вве	дение		4
1	Зар	оядово	-асимметричные модели стабильных кварков	5
	1.1	Пробл	пема избытка положительного заряда	5
	1.2	Избы	ток отрицательного заряда и темные атомы	6
2	Pac	сматр	иваемая модель	8
	2.1	Закал	ка тяжелых кварков и их кластеризация	8
		2.1.1	Закалка тяжелых кварков в зарядово-ассиметричном	
			случае	8
		2.1.2	Кластеризация тяжелых кварков в зарядово-асимметрич	НОМ
			случае. Вариант 1	11
		2.1.3	Кластеризация тяжелых кварков в зарядово-асимметрич	HOM
			случае. Вариант 2	17
	Зак	лючени	ие	23
\mathbf{C}	писо	к испо	ользованных источников	24

ВВЕДЕНИЕ

В настоящее время в рамках Стандартной модели (СМ) описано и экспериментально подтверждено существование трех поколений кварков и лептонов. На число поколений также установлено ограничение (в рамках CM, а также при $m_{\nu} < m_Z/2$, где m_{ν} — масса нейтрино в каком-либо поколении, m_Z — масса Z-бозона) в эксперименте на Большом электронпозитронном коллайдере: $N = 2.9840 \pm 0.0082$ [1]. Однако в последнее время все больше свидетельств, что СМ не полна, поэтому строятся новые теории и ищутся новые частицы за пределами Стандартной модели. В том числе ведется поиск новых поколений кварков. Такие кварки и лептоны могут быть достаточно долгоживущими, чтобы представлять новую стабильную форму материи. Если заряд образуемых частиц положительный, то такие частицы с обычными электронами образуют аномальные изотопы известных элементов. Если у них заряд отрицательный, но нечетный, то, связываясь с первичным гелием после его образования, они становятся положительно заряженными и формируют аномальный водород. Жесткие ограничния на такие аномальные изотопы могут представлять проблему для моделей, которые предсказывают новые стабильные кварки и лептоны.

В экспериментах на БАК получены нижние оценки на массу таких новых стабильных кварков, так что образуемые ими состояния должны превышать массу 1 ТэВ[2].

В данной работе рассматривается зарядово-асимметричная модель существования новых тяжелых кварков и исследуется изменение концентраций тяжелых кварков в ходе эволюции Вселенной вплоть до фазового КХД перехода. Последующий анализ их эволюции должен выявить подавление таких стабильных состояний, которые могут формировать изотопы известных элементов.

4

1 ЗАРЯДОВО-АСИММЕТРИЧНЫЕ МОДЕЛИ СТАБИЛЬНЫХ КВАРКОВ

1.1 ПРОБЛЕМА ИЗБЫТКА ПОЛОЖИТЕЛЬНОГО ЗАРЯДА

Модель, предложенная Ш. Л. Глэшоу [3; 4], основывается на калибровочной группе $SU(3) \times SU(2) \times SU'(2) \times U(1)$ и включает в себя в два раза больше фермионов, чем стандартная модель. То есть кроме 12 известных фермионов и калибровочной группы $SU(3) \times SU(2) \times U(1)$ вводится 12 тяжелых тера-ферминов и калибровочная группа $SU(3) \times SU'(2) \times U(1)$. Также вводится CP' преобразование, которое связывает легкие фермионы с их зарядово сопряженными тяжелыми партнерами ($U \to \bar{u}$) и наоборот.

Масса каждого тера-фермиона равна массе его легкого партнера, умноженного на фактор S, причем отсутствие успехов в поиске новых частиц дает ограничение на S снизу:

$$S > 2 \cdot 10^5 \tag{1.1}$$

Соответствующий расчет [3] показывает, что стабильными являются только тера-кварки U, которые в результате сильного взаимодействия объединяются в $(UUU)^{++}$, и тера-электрон E^- , который, объединясь с $(UUU)^{++}$, образует (UUUEE):

$$U + U \to (UU) + g \qquad U + (UU) \to (UUU) + g$$

(UUU) + Ep \rightarrow (UUUE) + p \qquad (UUUE) + Ep \rightarrow (UUUEE) + p,
(1.2)

где *g* — это глюон.

Остальные возможные соединения ((UUd), (Uud), (Ep) и др.) менее

выгодны энергетически, в результате чего их концентрация много меньше концентрации (UUUEE). Получившийся гелий-подобный атом — один из кандидатов на роль частиц скрытой массы.

Однако в модели возникают проблемы, которые не могут быть решены в нынешней версии. Например, проблемой является захват свободного E^- в $(4HeE^-)^+$, что тормозит такую аннигиляцию E и E^+ и препятствует эффективному уменьшению первичной распространенности тералептона. Даже для минимального значения $S = 0, 2 \cdot 10^6$ прогнозируемое земное содержание аномального водорода превышает экспериментальные верхние пределы более, чем на 20 порядков[5; 6].

1.2 ИЗБЫТОК ОТРИЦАТЕЛЬНОГО ЗАРЯДА И ТЕМНЫЕ АТОМЫ

Предыдущий подход пытается избежать проблем со свободными заряженными частицами темной материи, скрывая противоположно заряженные частицы в атомоподобных связанных системах, которые слабо взаимодействуют с барионной материей. В случае асимметрии заряда с избытком первичных частиц связывание положительных и отрицательных заряженных частиц никогда не бывает полным, и положительно заряженные тяжелые частицы должны сохраняться. Рекомбинируя с обычными электронами, эти тяжелые положительные частицы приводят к космологическому содержанию аномальных изотопов, превышающему экспериментальные верхние пределы. Чтобы соответствовать этим верхним пределам, аномальное содержание изотопов на Земле должно быть уменьшено, и механизмы такого уменьшения сопровождаются эффектами выделения энергии, которые сильно ограничены, в частности, данными с детекторов большого объема [7].

Другая модель предполагает наряду с избытком вещества избыток \bar{U} — стабильного антикварка четвертого поколения[7; 8]. Кварк четвертого поколения из-за большой энергии связи образут стабильные легкие барионы и антибарионы: $(Uud), (\bar{U}\bar{u}\bar{d}), (UUu), (UUU), (\bar{U}\bar{U}\bar{u}), (\bar{U}\bar{U}\bar{U})$. Последний, так называемый анютиум (anti-<u>U</u>-triple state — anutium или $\Delta_{3\bar{U}}^{--}$) с размером $r_{\Delta} \sim 1/\alpha_{QCD} \cdot m_U$ (что много меньше обычного размера адронов

6

 $r_h \sim 1/r_{\pi}$), представляет особый интерес.

В ранней Вселенной при температурах, значительно превышающих массы \bar{U} -кварков, они находились в термодинамическом равновесии с релятивистской плазмой. Равновесные концентрации \bar{U} и U пропорциональны соответственно $\exp\left(\frac{\mu}{T}\right)$ и $\exp\left(-\frac{\mu}{T}\right)$ [9]. Таким образом при дальнейшем остывании и расширении Вселенной часть \bar{U} -кварков аннигилировала с болыцей частью U-кварков, а оставшиеся из-за асимметрии \bar{U} -кварки начали объединяться и образовывать ($\bar{U}\bar{U}\bar{U}$) с массой порядка 1 TeV. Также будут образовываться нейтральные состояния ($\bar{U}u$) и ($\bar{U}\bar{U}\bar{u}$)⁻⁻.

При температурах T < 100 KeV (температура синтеза гелия) $\Delta_{3\bar{U}}^{--}$ начинает объединяться с гелием:

$$\Delta_{3\bar{U}}^{--} + {}^{4}\operatorname{He} \to \gamma + ({}^{4}\operatorname{He}^{++}\Delta_{3\bar{U}}^{--}).$$
(1.3)

В результате все отрицательные заряды связываются с ядром гелия, образуя т.н. О-гелий (⁴He⁺⁺ $\Delta_{3\bar{U}}^{--}$) с массой порядка 1 TeV и радиусом[10]:

$$R_0 \sim 1/Z_E Z_{He} \alpha m_{He} \approx 2 \cdot 10^{-13} \text{cm.}$$
 (1.4)

Такой «атом» может играть роль скрытой массы.

2 РАССМАТРИВАЕМАЯ МОДЕЛЬ

2.1 ЗАКАЛКА ТЯЖЕЛЫХ КВАРКОВ И ИХ КЛАСТЕРИЗАЦИЯ

В дальнейшем будем предполагать, что:

$$\kappa \cdot 3m_U \sim \kappa_b \cdot 5m_p \Rightarrow \kappa \sim \kappa_b \cdot \frac{5m_p}{3m_U} \approx \frac{3.6 \cdot 10^{-14}}{S_6},$$
(2.1)

где $\kappa=\frac{n_{\bar{U}}-n_U}{s}$ — величина, характеризующая степень ассиметрии антивещества надо веществом.

2.1.1 ЗАКАЛКА ТЯЖЕЛЫХ КВАРКОВ В ЗАРЯДОВО-АССИМЕТРИЧНОМ СЛУЧАЕ

На данном этапе температура лежит в следующих пределах: $100S_6GeV = \frac{1}{30}m_U < T < m_U = 3.5S_6TeV$ При таких температурах (температурах, превышающих массу тяжелого кварка) вещество находится в равновесии с плазмой, а его концентрация определяется распределением Больцмана и химическим потенциалом μ [4]:

$$n_{eq} = g_S \left(\frac{mT}{2\pi}\right)^{3/2} \exp\left(-\frac{m}{T}\right)$$
(2.2)

$$n_{U,\bar{U}} = n_{eq} \exp\left(\pm\frac{\mu}{T}\right) \tag{2.3}$$

При температурах меньше массы тяжелого кварка и вплоть до примерно 1/20 массы тяжелого кварка равновесие начинает смещаться в сторону аннигиляции частиц и античастиц:

$$U + \bar{U} \rightleftharpoons gg \tag{2.4}$$

Система уравненй, описывающих изменение концентрации со временем, выглядит следующим образом:

$$\begin{cases}
\frac{dn_U}{dt} + 3Hn_U = \langle \sigma v \rangle \left(n_{eqU} n_{eq\bar{U}} - n_U n_{\bar{U}} \right) \\
\frac{dn_{\bar{U}}}{dt} + 3Hn_{\bar{U}} = \langle \sigma v \rangle \left(n_{eqU} n_{eq\bar{U}} - n_U n_{\bar{U}} \right)
\end{cases}$$
(2.5)

При замене перемнных $x = \frac{T}{m_U}$; $r_{\pm} = \frac{n_{U,\bar{U}}}{s}$; $Hdt = -\frac{dT}{T} = \frac{dx}{x}$; $\kappa = r_{-} - r_{+}$ уравнение преобразуется следующим образом:

$$\begin{cases} \frac{dr_{+}}{dx} = f_{1} \langle \sigma v \rangle \left(r_{+}r_{-} - f_{2} \right), & f_{1} = \frac{s}{Hx} = \sqrt{\frac{\pi g_{s}^{2}}{45g_{\epsilon}}} m_{Pl} m_{U} \\ \frac{dr_{-}}{dx} = f_{1} \langle \sigma v \rangle \left(r_{+}r_{-} - f_{2} \right), & f_{2} = \frac{n_{eq}^{2}}{s^{2}} = \frac{45^{2}g_{S}^{2}}{2^{5}\pi^{7}g_{s}^{2}} \cdot \frac{e^{-\frac{2}{x}}}{x^{3}} \end{cases}$$
(2.6)

При температуре ниже некоторой температуры T_f (T_f , а значит и x_f , определяется из условия $R(T_f) = H(T_f)$) $x < x_f$: можно пренебречь слагаемым с f_2 , так как оно убывает гораздо быстрее, чем r_+r_- : $f_2 << r_+r_-$:

$$\begin{cases} \frac{dr_{+}}{dx} \approx f_{1} \langle \sigma v \rangle \left(r_{+} r_{-} \right) \\ \frac{dr_{-}}{dx} \approx f_{1} \langle \sigma v \rangle \left(r_{+} r_{-} \right) \end{cases}$$
(2.7)

В таком случае решением является:

$$\begin{cases} r_{+}(x \approx 0) \approx \frac{\kappa r_{+f}}{(\kappa + r_{+f})e^{\kappa J} - r_{+f}} \\ r_{-}(x \approx 0) \approx \frac{\kappa r_{-f}}{r_{-f} - (r_{-f} - \kappa)e^{-\kappa J}} \end{cases},$$
(2.8)

m_U, TeV	$\kappa, 10^{-14}$	$r_U, 10^{-13}$	$r_{\bar{U}}, 10^{-13}$
1.4	9.0e-14	3.4e-13	4.3e-13
2.1	6.0e-14	5.3e-13	5.9e-13
2.8	4.5e-14	7.2e-13	7.7e-13
3.5	3.6e-14	9.0e-13	9.4e-13
10	1.2e-14	2.6e-12	2.7e-12
14	9.0e-15	3.5e-12	3.5e-12
21	6.0e-15	5.1e-12	5.2e-12
31	4.0e-15	7.6e-12	7.6e-12
70	1.8e-15	1.6e-11	1.6e-11
105	1.2e-15	2.4e-11	2.4e-11

Таблица 2.1 — Численные значения для концентраций при разных массах U кварка на этапе закалки

где
$$J = \int_{0}^{x_f} f_1 \langle \sigma v \rangle dx = \frac{1.3 \cdot 10^{12}}{S_6 \left(1 - \frac{\ln S_6}{30}\right)}.$$

Рисунок 2.1 — График зависимости r_U и $r_{\bar{U}}$ от m_U

2.1.2 КЛАСТЕРИЗАЦИЯ ТЯЖЕЛЫХ КВАРКОВ В ЗАРЯДОВО-АСИММЕТРИЧНОМ СЛУЧАЕ. ВАРИАНТ 1

На этой стадии температура лежит в следующих пределах: $0.5S_6GeV < T < I_U \approx \frac{\alpha_c^2 m_U}{4} = 15S_6GeV$. При таких условиях начинается объединение отдельных кварков в результате сильного взаимодействия. Сначала рассмотрим их объединение в кварконий $U\bar{U}$:

$$\begin{array}{c} U+\bar{U}\rightarrow U\bar{U}+g\\ U\bar{U}\rightarrow gg \end{array}$$

Время жизни кваркония вычисляется аналогично времени жизни позитрония: $\tau_0 = \frac{2}{m_U \alpha^5}$ и $\tau_1 = \frac{2}{m_U \alpha^5} \cdot \frac{9\pi}{4(\pi^2 - 9)\alpha} \approx 10^2 \tau_0$ при $\alpha = 0.1 \ (\tau_0 -$ время жизни паракваркония(S=0), τ_1 – время жизни ортокваркония(S=1)) Скорость обратной реакции $R = n \langle \sigma v \rangle \sim g_S T^3 \cdot \frac{\alpha^2}{m_U^2} \approx g_s \frac{\alpha^8 m_U}{64}$; $t \sim$ $\frac{1}{R}, g_S = 16 \Rightarrow t \sim \frac{4}{\alpha^8 m_U} \approx 2000\tau_0$

Видно, что время жизни такого состояния много меньше времени протекания обратной реакции, поэтому ею в расчетах можно пренебречь, а концентрацию $U\bar{U}$ считать равной нулю.

Концентрации остальных соединений взаимосвязаны, поэтому процессы с их участием надо рассматривать в связке:

$U+U \rightleftarrows UU+g$	$\bar{U} + \bar{U} \rightleftharpoons \bar{U}\bar{U} + g$
$UU + U \rightarrow UUU$	$\bar{U}\bar{U}+\bar{U}\to\bar{U}\bar{U}\bar{U}$
$UU+\bar{U}\to U$	$\bar{U}\bar{U}+U\to\bar{U}$
$UUU+\bar{U}\rightarrow UU$	$\bar{U}\bar{U}\bar{U}+U\to\bar{U}\bar{U}$
$UUU + \bar{U}\bar{U} \to U$	$\bar{U}\bar{U}\bar{U}+UU\to\bar{U}$
$UU + \bar{U}\bar{U} \rightarrow gg$	$UUU + \bar{U}\bar{U}\bar{U} \to gg$

Здесь в нулевом приближении считаем, что для всех реакций объединения кварков в связные системы сечения одинаковы и равны[11]:

$$\langle \sigma v \rangle = \pi \left(\frac{m}{T}\right)^{0.9} \left(\frac{\alpha}{m}\right)^2$$
 (2.9)

Реакцию разрушения дикварков можно рассматривать как процесс ионизации, поэтому сечение возьмем по аналогии с сечением фотоионизации атома водорода. Используем полуклассическую формулу для водородоподобных систем[12]:

$$\langle \sigma v \rangle_{ion} = \frac{64\pi^4 \cdot m_e e^{10}}{3\sqrt{3} \cdot ch^6} \frac{z^4}{\nu^3 n^5}$$
(2.10)

После некоторых преобразований (замена массы электрона на массу кварка, переход от электромагнитного взаимодействия к сильному) получаем:

$$\langle \sigma v \rangle_{ion} = \frac{64\pi^4}{3\sqrt{3}} \cdot \alpha^5 m_U \int_{I_U}^{\infty} \frac{1/E^4 dE}{\exp\left(E/T\right) - 1} \tag{2.11}$$

Таким образом, уравнения для r(T) выглядят следующим образом:

Решение данной системы получено численно при помощи пакета Matlab. Здесь и далее по оси абсцисс вместо температуры откладывается вре-

МЯ.

Рисунок 2.2 — График зависимости $rac{r}{\kappa}$ от $m_U(r_U, r_{ar{U}}, r_{UU}, r_{ar{U}ar{U}})$

Рисунок 2.3 — График зависимости $\frac{r}{\kappa}$ от $m_U(r_U, r_{\bar{U}}, r_{UU}, r_{\bar{U}\bar{U}}, r_{UUU}, r_{\bar{U}\bar{U}\bar{U}})$

m_U, TeV	r_U	$r_{ar{U}}$	r_{UU}	$r_{ar{U}ar{U}}$	r_{UUU}	$r_{ar{U}ar{U}ar{U}}$
1.4	6.8e-21	8.9e-14	2.6e-23	4.2e-20	5.8e-21	9.8e-17
2.1	2.1e-17	5.9e-14	5.2e-22	2.8e-20	1.8e-18	1.3e-16
2.8	5.1e-16	4.5e-14	5.8e-22	2.2e-20	1.9e-17	2.1e-16
3.5	2.1e-15	3.7e-14	3.7e-22	2.0e-20	6.7e-17	3.1e-16
10	3.2e-14	4.3e-14	4.3e-20	7.5e-20	3.5e-15	4.1e-15
14	4.5e-14	5.3e-14	1.2e-19	1.6e-19	7.8e-15	8.5e-15
21	7.2e-14	7.7e-14	4.7e-19	5.2e-19	2.1e-14	2.2e-14
31	1.1e-13	1.1e-13	1.7e-18	1.8e-18	5.2e-14	5.3e-14
70	2.4e-13	2.5e-13	2.2e-17	2.2e-17	2.0e-13	2.0e-13
105	3.7e-13	3.7e-13	8.1e-17	8.1e-17	3.6e-13	3.6e-13

Таблица 2.2 — Численные значения для концентраций при разных массах U кварка на этапе кластеризации

Видно, что концентрация $UU(\bar{U}\bar{U})$ убывает гораздо быстрее, чем $U(\bar{U})$ или $UUU(\bar{U}\bar{U}\bar{U})$. Это означает, что соединения типа UUu или Uuu будут формироваться в очень маленьком количестве, что не позволит их обнаружить в современном веществе.

2.1.3 КЛАСТЕРИЗАЦИЯ ТЯЖЕЛЫХ КВАРКОВ В ЗАРЯДОВО-АСИММЕТРИЧНОМ СЛУЧАЕ. ВАРИАНТ 2

Все рассуждения, приведенные в начале предыдущего пункта, остаются верными, однако формулы, описывающие сечения взаимодействий, оказываются не совсем правильными.

Во-первых, сечение ионизации: использование полуклассической формулы Крамерса дает хороший результат только при температурах много меньше энергии связи системы. Гораздо более точный результат в достаточно широком диапазоне дает следующая формула:

$$\langle \sigma v \rangle_{ion} = \int_{E_{min}}^{E_{max}} \left(\frac{\partial \langle \sigma v \rangle_1}{\partial E_g} + \frac{\partial \langle \sigma v \rangle_2}{\partial E_g} \right) \frac{\mathrm{dE_g}}{\exp\left(E_g/T\right) - 1}$$
(2.12)

где $\langle \sigma v \rangle_1$ и $\langle \sigma v \rangle_2$ определяются следующим образом[13]:

$$\langle \sigma v \rangle_{1} = \frac{\pi \alpha}{(m_{q}E_{g})} \frac{2^{4l} l^{2}(n+1)! \{(1+\eta^{2}) \dots [(l-1)^{2}+\eta^{2}]\}}{(2l+1)! (2l-1)! (n-l-1)!} \\ \times \frac{\exp\left[-4\eta \operatorname{arccot} \rho\right]}{1-e^{-2\pi\eta}} \frac{\rho^{2l+2}}{(1+\rho^{2})^{2n-2}} \\ \times \left[G_{l}(l,l+1-n,\eta,\rho) - \frac{1}{(1+\rho^{2})^{2}} G_{l}(l,l-1-n,\eta,\rho)\right]^{2}$$
(2.13)

$$\langle \sigma v \rangle_2 = \frac{\pi \alpha}{(m_q E_g)} \frac{2^{4l+6}}{3} \frac{(l+1)^2 (n+1)! \{(1+\eta^2) \dots [(l+1)^2 + \eta^2]\}}{(2l+1)(2l+1)!(2l+21)!(n-l-1)![(l+1)^2 + \eta^2]} \\ \times \frac{\exp\left[-4\eta \operatorname{arccot} \rho\right]}{1-e^{-2\pi\eta}} \frac{\rho^{2l+4}\eta^2}{(1+\rho^2)^{2n}} \\ \times \left[(l+1-n)G_{l+1}(l,l+1-n,\eta,\rho) - \frac{l+1+n}{1+\rho^2}G_{l+1}(l,l-n,\eta,\rho)\right]^2 \quad (2.14)$$

Использованные обозначения:

$$G_l(-m,\eta,\rho) = \sum_{s=0}^{2m} b_s \rho^s; \quad \eta = \sqrt{\frac{I}{E_g - I}}; \quad \rho = \eta/n$$

E_{min} и *E_{max}* находятся из следующих кинематических соображений: рассмотрим налетающий глюон на систему из двух объединенных кварков и запишем для них законы сохранения:

$$\begin{cases} p_g + 2mV = mv_1 + m_v 2\\ E_g + 2 \cdot \frac{mV^2}{2} = \frac{mv_1^2}{2} + \frac{mv_2^2}{2} + I \end{cases}$$
(2.15)

При данных температурах скорости частиц лежат в пределах 0.01–0.1 скорости света, поэтому использование нерелятивистких формул допустимо. Для ионизации частицы энергия глюона E_g должна быть не меньше I. Пусть $E_g = I + \varepsilon$. Тогда, подставляя во второе уравнение скорость первой частицы, выраженную из первого уравнения, получаем:

$$v_2^2 - v_2 \cdot \left(\frac{E_g}{m} + 2V\right) + \frac{E_g^2}{2m^2} + 1.5V^2 + 2V\frac{E_g}{m} - \frac{\varepsilon}{m} = 0$$
(2.16)

Чтобы уравнение имело корни, дискриминан
т $D=2\frac{\varepsilon}{m}-\frac{E_g^2}{m^2}-2V^2-$

 $4V \frac{E_g}{m}$ должен быть неотрицательным. Такое происходит при значениях ε

из интервала
$$[m \cdot (1 - \frac{I}{m} - 2 * V - \sqrt{1 - \frac{4I}{m}} + 2V(V - 4)); m \cdot (1 - \frac{I}{m} - 2 * V + \sqrt{1 - \frac{4I}{m}} + 2V^2 - 8V)]$$

Во-вторых, использованная выше формула сечения рекомбиации хорошо описывает процесс при $T \ll m \alpha^{20/7} = 4.9 S_6 GeV$. В свою очередь, следующая формула хорошо описывает процесс в достаточно большом диа-

пазоне энергий, в т.ч. и при больших энергиях[14]:

$$\langle \sigma_{rec} v \rangle = \int_{0}^{\inf} \frac{2^{8} \pi^{2}}{3} \frac{\eta^{6} e^{-4\eta \arctan(1/\eta)}}{(1 - e^{-2\pi\eta})(\eta^{2} + 1)^{2}} \frac{\alpha}{\mu} \frac{1.202 + 0.5782 \ln(\eta^{2} + 1) + 0.2148 \ln^{2}(\eta^{2} + 1)}{1 + 0.3425 \ln(\eta^{2} + 1)} f(E) dE. \quad (2.17)$$

Здесь проводится усреднение по максвелловскому распределению по энергии Е налетающего кварка, $\eta = \sqrt{\frac{I}{E}}$.

Таким образом, получаем систему уравнений:

$$\begin{cases} \frac{dr_{U}}{dT} = -\frac{s}{HT} \bigg(-\langle \sigma v \rangle_{rec11} r_{U}^{2} + \langle \sigma v \rangle_{ion} r_{UU} r_{g} - \langle \sigma v \rangle_{rec11} r_{U} r_{\bar{U}} - \langle \sigma v \rangle_{rec12} r_{U} r_{U} v_{\bar{U}} \bigg) \\ -\langle \sigma v \rangle_{rec12} r_{U} r_{\bar{U}\bar{U}} - \langle \sigma v \rangle_{rec13} r_{U} r_{\bar{U}\bar{U}\bar{U}\bar{U}} + \langle \sigma v \rangle_{rec12} r_{UU} r_{\bar{U}} + \langle \sigma v \rangle_{rec23} r_{UUU} r_{\bar{U}\bar{U}\bar{U}} \bigg) \\ \frac{dr_{UU}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec11} r_{U}^{2} - \langle \sigma v \rangle_{ion} r_{UU} r_{g} - \langle \sigma v \rangle_{rec12} r_{U} r_{UU} - \langle \sigma v \rangle_{rec12} r_{UU} r_{\bar{U}} \bigg) \\ -\langle \sigma v \rangle_{rec22} r_{UU} r_{\bar{U}\bar{U}} + \langle \sigma v \rangle_{rec13} r_{UUU} r_{\bar{U}} - \langle \sigma v \rangle_{rec23} r_{UU} r_{\bar{U}\bar{U}\bar{U}} \bigg) \\ \frac{dr_{UUU}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec12} r_{U} r_{UU} - \langle \sigma v \rangle_{rec13} r_{UUU} r_{\bar{U}} - \langle \sigma v \rangle_{rec23} r_{UU} r_{\bar{U}\bar{U}\bar{U}} \bigg) \\ \frac{dr_{\bar{U}}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec11} r_{\bar{U}}^{2} + \langle \sigma v \rangle_{ion} r_{\bar{U}\bar{U}} r_{g} - \langle \sigma v \rangle_{rec13} r_{UUU} r_{\bar{U}\bar{U}} - \langle \sigma v \rangle_{rec12} r_{\bar{U}} r_{\bar{U}\bar{U}} \bigg) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{s}{HT} \bigg(-\langle \sigma v \rangle_{rec13} r_{\bar{U}} r_{UU} + \langle \sigma v \rangle_{rec12} r_{\bar{U}\bar{U}} r_{U} + \langle \sigma v \rangle_{rec23} r_{\bar{U}\bar{U}\bar{U}} r_{\bar{U}\bar{U}} \bigg) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec11} r_{\bar{U}}^{2} - \langle \sigma v \rangle_{ion} r_{\bar{U}\bar{U}} r_{g} - \langle \sigma v \rangle_{rec12} r_{\bar{U}\bar{U}} r_{\bar{U}} - \langle \sigma v \rangle_{rec23} r_{\bar{U}\bar{U}\bar{U}} r_{\bar{U}} \bigg) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec11} r_{\bar{U}}^{2} - \langle \sigma v \rangle_{ion} r_{\bar{U}\bar{U}} r_{g} - \langle \sigma v \rangle_{rec12} r_{\bar{U}\bar{U}} r_{\bar{U}} - \langle \sigma v \rangle_{rec23} r_{\bar{U}\bar{U}\bar{U}} r_{\bar{U}} \bigg) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec11} r_{\bar{U}}^{2} - \langle \sigma v \rangle_{ion} r_{\bar{U}\bar{U}} r_{g} - \langle \sigma v \rangle_{rec13} r_{\bar{U}\bar{U}\bar{U}} r_{U} - \langle \sigma v \rangle_{rec23} r_{\bar{U}\bar{U}} r_{UU} \bigg) \bigg) \\ \frac{dr_{\bar{U}\bar{U}}}{dT} = -\frac{s}{HT} \bigg(\langle \sigma v \rangle_{rec12} r_{\bar{U}} r_{\bar{U}} r_{\bar{U}} - \langle \sigma v \rangle_{rec13} r_{\bar{U}\bar{U}\bar{U}} r_{U} - \langle \sigma v \rangle_{rec23} r_{\bar{U}\bar{U}} r_{U} v_{\bar{U}} \bigg) \bigg) \bigg)$$

Решение данной системы получено численно при помощи пакета Matlab.

Рисунок 2.4 — График зависимости $\frac{r}{\kappa}$ от $m_U(r_U, r_{\bar{U}}, r_{UU}, r_{\bar{U}\bar{U}})$

Рисунок 2.5 — График зависимости $\frac{r}{\kappa}$ от $m_U(r_U, r_{\bar{U}}, r_{UU}, r_{\bar{U}\bar{U}}, r_{UUU}, r_{\bar{U}\bar{U}\bar{U}})$

m_U, TeV	r_U	$r_{ar{U}}$	r_{UU}	$r_{ar{U}ar{U}}$	r_{UUU}	$r_{ar{U}ar{U}ar{U}}$
1.4	4.8e-14	6.7e-14	2.9e-14	6.4e-14	1.0e-14	3.4e-14
2.1	7.1e-14	8.3e-14	5.4e-14	7.7e-14	2.3e-14	4.0e-14
2.8	9.1e-14	9.9e-14	7.6e-14	9.3e-14	3.6e-14	5.0e-14
3.5	1.1e-13	1.2e-13	9.7e-14	1.1e-13	4.9e-14	5.9e-14
10	2.7e-13	2.7e-13	2.8e-13	2.9e-13	1.7e-13	1.8e-13
14	3.4e-13	3.4e-13	3.7e-13	3.7e-13	2.3e-13	2.4e-13
21	4.8e-13	4.8e-13	5.4e-13	5.4e-13	3.6e-13	3.7e-13
31	6.8e-13	6.8e-13	7.9e-13	7.9e-13	5.4e-13	5.4e-13
70	1.4e-12	1.4e-12	1.7e-12	1.7e-12	1.2e-12	1.2e-12
105	2.0e-12	2.0e-12	2.5e-12	2.5e-12	1.8e-12	1.8e-12

Таблица 2.3 — Численные значения для концентраций при разных массах U кварка на этапе кластеризации

Как видно из графиков, подавление тяжелых кварков не так эффективно по сравнению с первым вариантом.

ЗАКЛЮЧЕНИЕ

В ходе работы рассмотрены зарядово-асимметричная модели существования новых тяжелых кварков. В двух разных приближениях приведены расчеты и построены графики зависимости концентраций тяжелых кварков от их массы вплоть до момента начала их объединения с легкими кварками.

В дальнейшем проведенный анализ будет использован для выявления стабильных положительно заряженных частиц или частиц с нечетным отрицательным зарядом, являющимися возможными кандидатами на роль источника аномальных изотопов водорода и других элементов. Поскольку рассматриваемая асимметричная модель предсказывает существование отрицательных дважды заряженных частиц, которые могут образовывать темные атомы, составляющие основную долю скрытой массы, вопрос о производстве аномальных изотопов, сопутствующих образованию темных атомов, является критически важным для этого направления и будет предметом дальнейших исследований.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Mele S. The Measurement of the Number of Light Neutrino Species at LEP // Adv. Ser. Direct. High Energy Phys. - 2015. - T. 23. - C. 89-106.
- Search for heavy long-lived charged *R*-hadrons with the ATLAS detector in 3.2 fb⁻¹ of proton-proton collision data at √s = 13 TeV / M. Aaboud [и др.] // Phys. Lett. B. - 2016. - Т. 760. - С. 647-665. - arXiv: 1606.05129 [hep-ex].
- Glashow S. L. A Sinister extension of the standard model to SU(3) x SU(2) x SU(2) x U(1) // 11th International Workshop on Neutrino Telescopes. – 2005. – C. 539–547. – arXiv: hep-ph/0504287.
- 4. Fargion D., Khlopov M. Tera-leptons' shadows over Sinister Universe // Grav. Cosmol. 2013. T. 19. C. 219-231. arXiv: hep-ph/0507087.
- Khlopov M. Y. New symmetries in microphysics, new stable forms of matter around us : Other thesis / Khlopov Maxim Yu. — 2006. — arXiv: astro-ph/0607048.
- Belotsky K. M., Khlopov M. Y., Shibaev K. I. Composite Dark Matter and its Charged Constituents // Grav. Cosmol. / под ред. V. N. Melnikov. – 2006. – Т. 12. – С. 93–99. – arXiv: astro-ph/0604518.
- Khlopov M. Y. Composite dark matter from 4th generation // Pisma Zh. Eksp. Teor. Fiz. - 2006. - T. 83. - C. 3-6. - arXiv: astro-ph/0511796.
- Belotsky K., Khlopov M., Shibaev K. Stable quarks of the 4th family? 2008. – arXiv: 0806.1067 [astro-ph].
- Dolgov A. D. Neutrinos in cosmology // Phys. Rept. 2002. T. 370. C. 333-535. arXiv: hep-ph/0202122.

- Belotsky K., Khlopov M., Shibaev K. Stable matter of 4th generation: hidden in the universe and close to detection? // 12th Lomonosov Conference on Elementary Particle Physics. - 2006. - C. 180-184. - arXiv: astroph/0602261.
- May heavy hadrons of the 4th generation be hidden in our universe while close to detection? / K. Belotsky [и др.]. — 2004. — arXiv: hep-ph/ 0411271.
- 12. Lochte-Holtgreven W. "Plasma Diagnostics". -1968.
- 13. Karzas W. J., Latter R. Electron Radiative Transitions in a Coulomb Field. //. -1961. T. 6. C. 167.
- Kotelnikov I. A., Milstein A. I. Electron radiative recombination with a hydrogen-like ion // Phys. Scripta. — 2019. — T. 94, № 5. — C. 055403. arXiv: 1810.08071 [physics.atom-ph].