ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ ГОСУДАРСТВЕНВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ

Расчет чувствительности эксперимента Р2О при использовании различных типов пучков нейтрино

Научный руководитель: к.ф.-м.н., доцент В. О. Тихомиров Научный консультант: д.ф.-м.н., проф. А. А. Соколов Выполнил: ст. гр. Б19-102 Т. В. Махкамов

Москва

Цель данной работы заключается в изучении, а также в расчете чувствительности проекта P2O к измерению параметров осцилляций нейтрино. С помощью моделирования данного ускорительного эксперимента планируется предсказать, насколько успешным будет реальный запланированный эксперимент.

Задачи работы:

- 1. изучить эксперимент Р2О;
- 2. изучить процесс осцилляций нейтрино в вакууме и веществе;
- 3. провести моделирование осцилляций в GLoBES;
- 4. моделирование нейтринного канала в GEANT4;
- 5. рассчитать чувствительность Р2О к определению иерархии масс нейтрино, к нарушению фазы δ_{CP} -четности;

Проект Р2О

Наиболее амбициозным проектом, предложенным на сегодняшний день, является проект P2O (Protvino to ORCA)

Осцилляции нейтрино

где

Три массовых состояния нейтрино ν_1, ν_2, ν_3 с массами m_1, m_2, m_3 соответственно и три флейворных состояния нейтрино ν_e, ν_μ, ν_τ связаны через унитарную матрицу смешивания *U*:

$$\begin{pmatrix} \nu_{e,L} \\ \nu_{\mu,L} \\ \nu_{\tau,L} \end{pmatrix} = \underbrace{\begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu1} & U_{\mu2} & U_{\mu3} \\ U_{\tau1} & U_{\tau2} & U_{\tau3} \end{pmatrix}}_{U} \begin{pmatrix} \nu_{1,L} \\ \nu_{2,L} \\ \nu_{3,L} \end{pmatrix}$$

,где матрица U параметризованная матрица ПМНС:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & e^{-i\delta_{cp}}s_{13} \\ 0 & 1 & 0 \\ -e^{i\delta_{cp}}s_{13} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix},$$
$$s_{\alpha\beta} = \sin\theta_{\alpha\beta}, c_{\alpha\beta} = \cos\theta_{\alpha\beta}, \alpha, \beta = \overline{1, 3}.$$

Осцилляции нейтрино в вакууме и веществе

Осцилляции нейтрино в вакууме и веществе

В веществе:
$$P(\nu_{\mu} \to \nu_{e}) = \sin^{2}\theta_{23} \cdot \sin^{2}(2\theta_{13}) \cdot \frac{\sin^{2}(\Delta_{31} - aL)}{(\Delta_{31} - aL)^{2}} \Delta_{31}^{2} + \sin(2\theta_{23}) \times (\Delta_{31} - aL)^{2} + \sin(2\theta_{23}) \times (\Delta_{31} - aL)^{2} + \sin(2\theta_{23}) \times (\Delta_{31} - aL)^{2} + \sin(2\theta_{31} - aL)^{2} + \sin($$

Моделирование осцилляций в GLOBES

Вероятности осцилляций нейтрино в вакууме для $\delta_{CP} = 0$, $\pi/2$, π , $3\pi/2$, полученные с помощью GLoBES. График для осцилляции $\nu_{\mu} \rightarrow \nu_{e}$ (слева) и $\bar{\nu_{\mu}} \rightarrow \bar{\nu_{e}}$ (справа).

Моделирование нейтринного канала в GEANT4

- ParticleGun генератор частиц, находящийся в начале координат, из которого вылетает пучок протон с энергией 70 ГэВ;
- Target медная цилиндрическая мишень, на которую налетает пучок протонов, с длиной 50 см и радиусом 0.25 мм;
- · focus фокусирующая установка;
- Decay Pipe вакуумная трубка в которой летит сгенерированная частица, длинной 100 м и радиусом 1 м;
- Shielding бетонный слой, длинной 50 м;
- ND детектор, для регистрации нейтрино, радусом 1 м, и длинной 50 м, отстоящий на 1 метр от Shielding слоя;

Моделирование нейтринного канала в GEANT4

Моделирование нейтринного канала в GEANT4

Decay point for π^{\pm}

10

Сфокусированный пучок

11

Образованные спектры нейтрино

Спектры нейтрино, образовавшихся в результате распада Пи-мезона (π^+)(слева), К-мезона (K^+)(справа) с исходной энергией от 10 до 15 ГэВ:

Образованные спектры нейтрино

Спектры нейтрино попавших в детектор и образовавшихся в результате распада Пимезона (π^+)(слева), К-мезона (K^+)(справа) с исходной энергией от 10 до 15 ГэВ:

Проект Р2О

Смоделированный спектр нейтринных пучков направленных на ORCA в режиме работы ν (слева) и $\bar{\nu}$ (справа).

Оценка чувствительности была осуществлена с применением метода ста- тистических гипотез

Чувстви-	Истина	Гипотеза	$\sigma = \sqrt{\Delta \chi^2}$		
тельность к	истина		$o = \sqrt{\Delta \chi^2}$		
иерархии масс	NO	10	$\sqrt{\chi^{2(ext{test})}_{IO}-\chi^{2(ext{true})}_{NO}}$		
фазе δ_{CP}	$[-\pi,\pi]$	нет CPV	$\sqrt{\min(\chi^{2(ext{test})}_{\delta_{CP}=0},\chi^{2(ext{test})}_{\delta_{CP}=\pi})-\chi^{2(ext{true})}_{\delta_{CP}}}$		

Таблица 1: Характеристики метода статистических гипотез для двух случаев

ЧУВСТВИТЕЛЬНОСТЬ К ИЕРАРХИИ МАСС НЕЙТРИНО

Рисунок 1: Чувствительность Р2О к иерархии масс нейтрино в зависимости от времени экспозиции с пучком мощностью 90 кВт (с положительной полярностью пучка). Для обоих нормального(красный) и обратного(синий) упорядочения показаны наиболее и наименее 16 благоприятные сценарии.

ЧУВСТВИТЕЛЬНОСТЬ К НАРУШЕНИЮ СР-СИММЕТРИИ

Рисунок 2: увствительность к нарушению СР-симметрии в зависимости от значения *δ*_{CP} для эксперимента Р2O (зеленый), эксперимента Р2O с маркировкой (красный). 17

Таким образом, в данной работе были рассмотрены следующие аспекты:

- Принцип работы эксперимента Р2О, включая ближний и дальний детекторные комплексы.
- Описание явления осцилляций нейтрино в вакууме и веществе.
- Моделирование эксперимента P2O с использованием программной среды GLoBES.
- Расчет чувствительности экспериметна Р2О к определению иерархии масс нейтрино и нарушению СР-симметрии для различного времени работы эксперимента и для различных потоков нейтрино.

Итоговая формула для расчёта χ^2 в учётом штрафных членов и входных ограничений:

$$\chi^2 = 2\sum_{k=1}^4 \sum_{i=1}^N \left(n_{ik}^{\text{фит}} - n_{ik}^{\text{ист}} + n_{ik}^{\text{ист}} \log \frac{n_{ik}^{\text{ист}}}{n_{ik}^{\text{фит}}} \right) + \chi^2_{input} + \chi^2_{pull}$$

Масса и время жизнидля π^+ -мезона, составляет:

Mass $m=139.57018\pm 0.00035$ MeV; Lifetime $\tau=2.6033\pm 0.0005\times 10^{-8}$ s; Схема распада для π^+ : $\pi^+\to\mu^++\nu_\mu$.

Для *К*+-мезона:

Mass $m = 493.677 \pm 0.005$ MeV;

Lifetime $au = 1.2380 \pm 0.0020 \times 10^{-8}$ s;

Из всех возможных распадов K^+ , 63% состоявляет: $K^+ o \mu^+ +
u_{\mu}$.

Эффект вещества	a, KM^{-1}	$2.71\cdot 10^{-4}$	
Константа Ферми	G _F , эВ ⁻²	$1.67 \cdot 10^{-23}$	
Плотность электронов	N_e, m^{-3}	$8.98 \cdot 10^{29}$	
Энергия нейтрино	$E, \Gamma_{\ni B}$	0.5 - 8	
База осцилляций	L, KM	1284.9	
Плотность Земли	$ ho, \Gamma/\mathrm{cm}^2$	2.848	
Рабочая масса	m, KT	40	

Таблица 2: Числовые значения величин

$$E_{\nu} = \frac{m_{\pi(K)}^2 - m_{\mu}^2}{2(E_{\pi(K)} - p_{\pi(K)})}$$
(1)

		0			
Параметр	Центральное	Относительная			
	значение	погрешность, %			
$ heta_{12}$	0.5903	2.3			
$\theta_{23}(\text{NO})$	0.866	4.1			
$\theta_{23}(\mathrm{IO})$	0.869	4.0			
$\theta_{13}(\text{NO})$	0.150	1.5			
$\theta_{13}(\mathrm{IO})$	0.151	1.5			
Δm^2_{21}	$7.39\cdot 10^{-5}$ эВ 2	2.8			
$\Delta m^2_{31}(\text{NO})$	$2.451 \cdot 10^{-32} \text{ B}^2$	1.3			
$\Delta m^2_{31}(\mathrm{IO})$	$-2.512 \cdot 10^{-32} \mathrm{B}^2$	1.3			

Таблица 3: Центральные значения осцилляционных параметров и их относительные погрешности

Experiment	T2K		T2HK	$NO\nu A$	DUNE	P2O	
Location	Japan		Japan	USA	USA	Russia/Europe	
Status	operating		proposed	operating	construction	proposed	
Accelerator facility	J-PARC		J-PARC	Fermilab	Fermilab	Protvino	
Baseline	295 km		295 km	$810 \mathrm{~km}$	1300 km	2595 km	
Off-axis angle	2.5°		2.5°	0.8°	0°	0°	
1-st max $\nu_{\mu} \rightarrow \nu_{e}$	$0.6 \mathrm{GeV}$		$0.6 \mathrm{GeV}$	$1.6~{\rm GeV}$	$2.4 {\rm GeV}$	$4 \mathrm{GeV}$	
Detector	Detector SuperK		HyperK	$NO\nu A$	DUNE	ORCA	Super-ORCA
Target material	pure water		pure water	LS	liquid Ar	sea water	
Detector technology	Cherenkov		Cherenkov	LS	TPC	Cherenkov	
Fiducial mass	22 kt		186 kt	$14 \mathrm{kt}$	40 kt	$8000 \ \mathrm{kt}$	4000 kt
Beam power	500 kW		1300 kW	700 kW	2400 kW	$450~\mathrm{kW}$	450 kW
ν_e events per year (NO)	~ 20		230	~ 20	230	3500	3400
$\bar{\nu}_e$ events per year (IO)	~ 6		165	~ 7	60	1200	1100
NMO sensitivity ($\delta_{CP} = \pi/2$)	-	-	4σ	1σ	7σ	$>7 \sigma$	$\gg 7 \sigma$
CPV sensitivity ($\delta_{CP} = \pi/2$)	1.5σ	3σ	8σ	2σ	7 σ	3σ	9σ
1σ error on δ_{CP} ($\delta_{CP} = \pi/2$)			22°		11°	30°	8°
1σ error on δ_{CP} ($\delta_{CP} = 0$)			7°		6°	15°	10°
Year / data taking years	2018	2026	10 yr	2024	10 yr	6 yr	10 yr

22