Национальный исследовательский ядерный университет «МИФИ» Кафедра физики элементарных частиц №40

Выпускная квалификационная работа бакалавра на тему:

АНАЛИЗ КООРДИНАТНОЙ ТОЧНОСТИ ПИКСЕЛЬНОГО ДЕТЕКТОРА ПЕРЕХОДНОГО ИЗЛУЧЕНИЯ С СЕНСОРОМ ИЗ ПОЛУПРОВОДНИКОВЫХ МАТЕРИАЛОВ

Студент: Якобнюк Л.А. Научный руководитель: Смирнов С.Ю.

Москва 2023

Цель работы

С 2017 по 2021 годы на пучке ускорителя SPS в ЦЕРН было проведено 3 эксперимента по изучению переходного излучения: в 2017 г. использовался сенсор из кремния, а в 2018 и 2021 гг. был использован сенсор из арсенида галлия. Целью работы является анализ координатной точности пиксельного детектора переходного излучения с сенсором из кремния

Экспериментальная установка (пучок мюонов с энергией 180 ГэВ с ускорителя SPS ЦЕРН)

Юстировка пиксельных плоскостей. Отклонения в определении координаты кластера двумя разными пиксельными плоскостями

Юстировка пиксельных плоскостей. Отклонения в определении координаты кластера двумя разными пиксельными плоскостями (по оси абсцисс – мкм) пл.0-пл.1

Юстировка пиксельных плоскостей. Результаты: слева – до отбрасывания кластеров из одного пикселя, справа - после

пл.2. - пл.0

пл.2. - пл.1

Юстировка пиксельных плоскостей. Итог

Х(1-3) и Ү(5-7)	До юстировки	После юстировки		
пл.1 — пл.0	650,6±0,1 мкм	-0,29±0,11 мкм		
пл.2 — пл.0	704,6±0,2 мкм	-0,33±0,17 мкм		
пл.2 — пл.1	53,8±0,2 мкм	-0,07±0,24 мкм		
пл.1 — пл.0	-213,6 ± 0,2 мкм	-0,23 ± 0,07 мкм		
пл.2 — пл.0	-370,8 ± 0,3 мкм	-0,11 ± 0,13 мкм		
пл.2 — пл.1	-159,4 ± 0,1 мкм	-0,27 ± 0,12 мкм		

Восстановление трека частицы. Учет наклона пиксельных плоскостей

Дo

После

По вертикальной оси отложена Z-координата кластера, по горизонтальной - Y

Восстановление трека частицы. Построение гистограмм «Residuals»

1. Берутся координаты кластера на любых двух пиксельных плоскостях

2. По этим двум точкам в пространстве проводится трек и проецируется на третью плоскость.

3. Строится гистограмма отклонения спроецированной на третью плоскость точки от позиции кластера, зафиксированной плоскостью.

4. Среднеквадратичное отклонение (sigma) полученного отфитированного распределения Гаусса и даёт значение координатной точности.

Восстановление трека частицы. Координатная точность трёх дополнительных пиксельных детекторов по оси Х

Получение координатной точности исследуемого детектора

Заключение

Для трёх дополнительных пиксельных плоскостей получены следующие значения координатной точности:

1. 12,6 ± 0,1 мкм для первой плоскости, 18,6 ± 0,2 мкм для второй и 6,22 ± 0,04 мкм для третьей плоскости по оси Х;

2. 11,8 ± 0,1 мкм для первой плоскости, 18,0 ± 0,1 мкм для второй и 5,74 ± 0,04 мкм для третьей плоскости по оси Ү.

Для исследуемого кремниевого детектора переходного излучения получено:

<u>22,4 ± 0,3 мкм по оси X, 20,1 ± 0,2 мкм по оси Y.</u>

Конфигурации сеансов измерений в эксперименте 2017 года

Radia- tor	Mylar 50 µm/3 mm		Polyethylene 125 µm/3.3 mm		Polypropylene					
Beam					15 µm/ 0.2 mm	62 µm/2.2 mm		Fibre	Dummy	No radiator
	1 set	3 sets	1 set	3 sets	5 sets	3 sets	5 sets			
e/π 20 GeV	18-22	23-27	-	28-31	32-36	50+51	81	76	52+77	53
μ 120 GeV	68	69	71	72	73	70	-	67	74	-
μ 180 GeV	54+66	55+56	57	58+59	60+61	62+63	80	78	65+79	64

Конфигурации сеансов измерений в эксперименте 2018 года

GaAs-2018 test beam summary

(run numbers and statistics)

/eos/atlas/atlascerngroupdisk/det-trt-tb/testbeam2018/GaAs/Analysis/pass2/run**_3.root

		Mylar			Polyet	No	Dummy		
		50µ/3mm		67µ/3mm				67/2 91/2.3	
		30 foils	90 foils	30 foils	90 foils	90 foils	30 foils	radiator	radiator
е/п 20	2 m	32+51 11943+31201 11604+30394	31+50 12139+31752 11835+31144	35+53 22881+17772 22154+17335	33+34+52 7822+18838+20040 7594+18297+19601	36+54 23544+20437 22854+19995	37+55 23442+19080 22719+18547	38 22351 21595	39 22413 21613
GeV	4 m	43 49887 48510	40+41+42 20926+2768+14352 20267+2692+13897	45 33602 32768	44 40497 39846	46+47 3415+29565 3376+29093	48 32992 32208	-	49 19023 18399
μ 120 GeV	2 m	2 82565 81655	1 88941 87748	4 95270 94250	3 95959 94973	5 97810 96761	6 87722 86760	-	7 90656 89637
	4 m	9 87605 86598	8 98229 97162	11+12 43758+49781 43287+49126	10 95893 94932	13+14 77279+29131 76353+28783	15 97570 96352	-	16 94856 93606
µ 180	2 m	25 64876 63539	24 64193 62891	27 63361 62100	26 64685 63400	28 61135 59937	29 42204 41321	-	30 21662 21187
GeV	4 m	18 66070 64830	17 65147 63900	20 67245 65846	19 65876 64594	21 65643 64367	22 65069 63802	-	23 63830 62493
μ 290 GeV	2 m	61 40339 38906	62 29374 28325	59 36357 35019	60 38116 36849	57 45124 43592	56 36037 34703	-	58 39528 38142
	4 m	68 28001 26979	63 28443 27546	67 26626 25709	64 ³⁸¹⁷³ 36955	65 28100 27158	66+70 18556+17853 17911+17160	-	69 25963 24965

Первая итерация выравнивания

Распределение по размерам кластеров: плоскости 0, 1 и 2 соответственно

size

93722

3.228

1.023

Entries

7

Cluster size

Mean

RMS

5

6

Приложение 5 _{S-кривая}

