Министерство науки и высшего образования Российской Федерации Федеральное государственное автономное образовательное учреждение высшего образования «Национальный исследовательский ядерный университет «МИФИ» Кафедра физики элементарных частиц №40

Защита выпускной квалификационной работы бакалавра Определение количества фона $jet + \gamma$ для процесса $Z\gamma \to (\nu \bar{\nu})\gamma$ в эксперименте ATLAS

Науч. руководитель: Е. Ю. Солдатов Студент: Л. Л. Симбирятин

Москва 2023

Мотивация

Проблемы СМ:

- Проблема иерархии масс
- Масса нейтрино отлична от нуля
- Не описывает гравитационное взаимодействие, частицы скрытой массы и т.д.

Рис.: Электрослабые трехбозонные вершины в СМ

Измеряется сечение

ассоциированного рождения $Z+\gamma$

в рр столкновениях

Z
ightarrow адроны

 $Z \rightarrow$ заряженные лептоны

 $Z
ightarrow
u ar{
u}$

Рис.: Изучаемые диаграммы (правая содержит запрещенную в СМ вершину)

Важный этап - оценка фонов

Отборы и фоны

Величина	отбор
$\Delta \phi(j_1, p_T^{miss})$	> 0.4 (если есть струи)
$\Delta \phi(\gamma, p_T^{miss})$	> 0.7
p_T^{miss}	> 130 ГэВ
p_T^{γ}	> 150 ГэВ
N_{γ}	= 1
$E_T^{cone20}/p_T^{\gamma}$	< 0.065
$p_T^{cone20}/p_T^{\dot{\gamma}}$	< 0.05
$ \Delta z $	< 250 мм
лептонное вето	$N_{\mu} = 0, N_e = 0$
E_T^{miss} значимость	> 11
p _T ^{SoftTerm}	< 16 ГэВ

$$egin{aligned} E_T^{miss} &= |ec{p}_T^{miss}| \ E_T^{miss} & ext{ значимость} = \ E_T^{miss} / \sqrt{\sigma_L^2(1-
ho_{LT}^2)} \end{aligned}$$

- $au
 u \gamma$ и $l
 u \gamma$ от $W \gamma$, где au o h или когда e или μ не восстановлены или вне покрытия детектора;
- $\gamma + jet;$
- $W(e\nu)$, t и $t\bar{t}$, где $e \rightarrow \gamma$;

$$laces$$
 Z $(
uar
u)+jets$, где $jet o\gamma;$

• $Z(II) + \gamma$, где $\tau \to h$ или когда *е* или μ не восстановлены или вне покрытия детектора;

Оценку фона $\gamma + jet$ необходимо производить из данных, так как он возникает вследствие неверной идентификации объекта Фон $\gamma + jet$ является доминирующим

	data	$\gamma + jet$	$W\gamma$	$Z(II)\gamma$	$e ightarrow \gamma$	$j \rightarrow \gamma$	$tt\gamma$
кол-во событий	21650 ± 150	6450 ± 70	3390 ± 20	240 ± 4	2510 ± 11	670 ± 50	175 ± 3
доля, %		29.8	15.6	1.1	11.6	3.1	0.8

Таблица: Число событий для данных и фонов в сигнальной области

оценка фона γ + jet

イロト イヨト イヨト イヨト

АВСД-метод (1)

Основные допущения:

- Отсутствие корреляции между базисными переменными (R = 1)
- Коэффициенты утечки сигнала с; верно предсказываются Монте-Карло

$$R = \frac{N_A^{\gamma+jet} N_D^{\gamma+jet}}{N_B^{\gamma+jet} N_C^{\gamma+jet}}$$

 $\mathbf{c}_{i} = \frac{N_{i}^{Z(\nu\bar{\nu})\gamma}}{N_{A}^{Z(\nu\bar{\nu})\gamma}}$

	data	$W\gamma$	$Z(II)\gamma$	$e ightarrow \gamma$	$j \rightarrow \gamma$	$tt\gamma$
А	21650 ± 150	3390 ± 20	240 ± 4	2510 ± 11	670 ± 50	175 ± 3
В	14560 ± 120	1570 ± 12	96 ± 3	514 ± 5	310 ± 70	328 ± 4
С	4840 ± 70	710 ± 10	46 ± 2	361 ± 4	220 ± 40	59 ± 2
D	4320 ± 70	372 ± 6	23 ± 1	131 ± 2	90 ± 10	104 ± 2

Таблица: Число событий для данных и фонов кроме $\gamma + jet$

< 4 P ►

АВСД-метод (2)

$$\begin{cases} \boxed{ N_A = N_A^{Z(\nu\bar{\nu})\gamma} + N_A^{bkg} + N_A^{\gamma+jet} } \\ N_B = c_B N_A^{Z(\nu\bar{\nu})\gamma} + N_B^{bkg} + N_B^{\gamma+jet} \\ N_C = c_C N_A^{Z(\nu\bar{\nu})\gamma} + N_C^{bkg} + N_C^{\gamma+jet} \\ N_D = c_D N_A^{Z(\nu\bar{\nu})\gamma} + N_D^{bkg} + N_D^{\gamma+jet} \\ \end{cases}$$

Разрешаем систему относительно $N_A^{Z(
uar
u)\gamma}$:

$$\mathsf{N}_{A}^{Z(\nu\bar{\nu})\gamma} = \frac{b - \sqrt{b^2 - 4ac}}{2a}$$

$$\begin{cases} a = c_D - Rc_C c_B \\ b = \tilde{N}_D + c_D \tilde{N}_A - R(c_B \tilde{N}_C + c_C \tilde{N}_B) \\ c = \tilde{N}_A \tilde{N}_D - R \tilde{N}_C \tilde{N}_B. \end{cases}$$

Симбирятин Л. Л. (НИЯУ МИФИ)

оценка фона γ + jet

4 ₫ ► 4 ≧ ► 4 ≧ ►
8 июня 2023 г.

3

АВСО-метод. Логические конфигурации

<u>R</u> оценивается на основе Монте-Карло моделирования. Ни одна из рассмотренных конфигураций не может считаться удовлетворительной, т.к. при попытках произвести дальнейшие расчеты возникают неправдоподобные результаты. В связи с этим встает вопрос о достоверности результатов оценки R из моделирования.

< □ > < 同 > < 回 > < 回 > < 回 >

Расширенный ABCD-метод (оценка R из данных)

Сравнение оценки R из данных и из Монте-Карло

Рис.: Сравнение R_{data} и R_{mc} при отборе E_T^{miss} значимость < 11

$$R_{mc} = \frac{N_{B-E}^{\gamma+jet(mc)} N_F^{\gamma+jet(mc)}}{N_{D-F}^{\gamma+jet(mc)} N_E^{\gamma+jet(mc)}}$$

Рис.: Сравнение R_{data} и R_{mc} при отборе E_T^{miss} значимость < 15

Сравнить оценку из данных и из Монте-Карло можно только в расширенной области. С этой целью вводится R_{mc} . Для определения тренда сигнальный отбор по E_T^{miss} значимости поднимается с 11 до 15.

Оценка + погрешности(1)

Статистическая погрешность: 4730_920

Систематическая погрешность обусловлена:

- Зависимостью значения R от положениея границы по переменной E^{miss} signif для регионов E и F
- Величиной верхнего ограничивающего значения по переменной p_T^{SoftTerm}
- Определением коэффициентов утечки сигнала *с*;

Варьируются только отборы, не связанные с определением сигнальной области

< □ > < 同 > < 回 > < 回 > < 回 >

Оценка + погрешности(2)

Тип	Источник	Отклонение	Отн. отклонение
CTOTINGTINUOCICO C		+940	19.9%
СТАТИСТИЧЕСКАЯ		-920	19.5%
систематическая	флуктуации R	+640	13.5%
		-550	11.5%
систематическая	параметры утечки сигнала	-250	5.2%
		+90	2.0%
систематическая	верхний отоор по рт	-80	1.6%

Таблица: Источники погрешности для оценки фон
а $\gamma+jet$ с учетом перенормировки фона $jet\to\gamma$

<u>Итоговая оценка</u> числа событий $\gamma + jet$ в сигнальной области с учетом статистической и систематической погрешности составляет 4730 $^{+940+690}_{-920-600}$

Симбирятин Л. Л. (НИЯУ МИФИ)	оценка фона γ + jet	8 июня 2023 г.	10/19
	1 >	그 눈 옷 몹 눈 옷 물 돈	E

Распределение по множественности струй

Таблица: Число событий фона $\gamma + jet$ в сигнальной области, оцененное разными способами. Указанные погрешности являются статистическими

Симбирятин Л. Л. (НИЯУ МИФИ)

оценка фона γ + jet

8 июня 2023 г.

Заключение

В ходе проделанной работы

- Изучен ABCD-метод для оценки фоновых процессов
- Подобранна конфигурация областей, используемых в методе
- Произведено сравнение данных с результатами моделирования
- Получено центральное значение, а также статистическая и систематическая погршности для числа событий $\gamma + jet$: 4730 $^{+940+690}_{-920-600}$
- Оценена форма распределения для данного фона по множественности струй из данных

Резерв (1)

R	Центр. знач.	Отклонение	Отн. отклонение
1.00	4730		
1.05	5370	+640	13.5%
0.95	4180	-550	11.5%

Таблица: Систематическая погрешность от флуктуаций R

э

13/19

(a)

Отбор	Центр. знач.	Отклонение	Отн. отклонение
<i>p_T^{SoftTerm} <</i> 40 ГэВ	4730		
<i>p_T^{SoftTerm} <</i> 36 ГэВ	4820	+90	2.0%
<i>p_T^{SoftTerm} <</i> 44 ГэВ	4650	-80	1.6%

Таблица: Систематическая погрешность от варьирования верхнего ограничения на $p_T^{SoftTerm}$

Ci	Sherpa 2.2	MadGraph+Pythia8	Отклонение	Отн. отклонение
c _B	0.1595 ± 0.0003	0.1420 ± 0.0013	-0.0175	11.0%
c _C	0.1843 ± 0.0004	0.1874 ± 0.0016	+0.003	1.6%
c _D	0.03483 ± 0.00015	0.0287 ± 0.0006	-0.00613	17.6%
Центр. знач.	4730	4480	-250	5.2%

Таблица: Систематическая погрешность от ошибки в определении коэффициентов утечки *c*_i

イロト 不得下 イヨト イヨト 二日

Резерв (3)

К SoftTerm относятся сигналы детектора, ассоциированные с первичной вершиной, но не ассоциированные ни с одним из восстановленных объектов. Прежде всего это мягкие адронные струи или низкоэнергетическая адронная активность в калориметре.

Переменная E_T^{cone20} представляет собой энерговыделение в электромагнитном калориметре в конусе с раствором $\Delta R = 0.2$ вокруг фотонного кандидата, а p_T^{cone20} есть сумма поперечных импульсов в том же самом конусе.

$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$

$$\vec{p}_T^{\text{miss}} = -\sum \vec{p}_T^{\text{e}} - \sum \vec{p}_T^{\mu} - \sum \vec{p}_T^{\gamma} - \sum \vec{p}_T^{\text{jets}} - \sum \vec{p}_T^{\text{SoftTerm}}$$

Резерв (4)

Рис.: Распределения по E_T^{miss} значимость и $p_T^{SoftTerm}$, построенное без отборов на эти переменные

оценка фона γ + jet

8 июня 2023 г.

(日) (同) (日) (日) (日)

э

Резерв (5)

Рис.: Профильные гистограммы для установления корреляции по переменным E_T^{miss} значимость и $p_T^{SoftTerm}$. Сняты отборы только по этим переменным

Резерв (6)

Рис.: Профильные гистограммы для установления корреляции по переменным E_T^{miss} значимость и $\Delta \phi(\gamma, p_T^{miss})$. Сняты угловые отборы и отбор по E_T^{miss} значимость

Резерв (7)

Рис.: Профильные гистограммы для установления корреляции по переменным E_T^{miss} значимость и $\Delta \phi(\gamma, j_1)$. Сняты угловые и отбор по E_T^{miss} значимость