Министерство науки и высшего образования Российской федерации Федеральное Государственное автономное Образовательное учреждение высшего образования «Национальный Исследовательский Ядерный Университет «МИФИ»

УДК 539.123

ОТЧЁТ О НАУЧНО-ИССЛЕДОВАТЕЛЬСКОЙ РАБОТЕ

ПОИСК ТЁМНЫХ БОЗОНОВ ДЕТЕКТОРОМ IDREAM НА КАЛИНИНСКОЙ АТОМНОЙ СТАНЦИИ

Студент	К. К. Киселев
Научный руководитель,	
к.фм.н.	Е. А. Литвинович
Научный консультант,	
старший научный сотрудник	Р. Р. Нугманов

СОДЕРЖАНИЕ

Bı	едение	3
	Скрытая масса	3
	Тёмные бозоны	4
	Детектор iDREAM	6
1	Расчёт ожидаемого числа событий	7
	1.1 Спектр рождённых тёмных бозонов	7
	1.2 Ожидаемый в детекторе iDREAM энергетический спектр	8
2 Отбор событий		10
	2.1 Критерии отбора	10
	2.2 Методика отбора	10
	2.3 Оценка фона	10
	2.4 Оценка погрешностей	11
3	Получение ограниченй	13
4	Заключение	15
Cı	Список использованных источников	

ВВЕДЕНИЕ

СКРЫТАЯ МАССА

В астрофизике и космологии существует достаточное количество свидетельств существования материи, заметно взаимодействующей с обычным веществом только гравитационно, – скрытой массы [1]. К таким свидетельствам относятся:

- анизотропия реликтового излучения;
- гравитационное линзирование;
- кривые вращения галактик.

Хотя исходные предположения о свойствах скрытой массы были различными, по результатам моделирования эволюции Вселенной с учётом скрытой массы было выявлено, что преобладает холодная скрытая масса: её доля от критической плотности Вселенной составляет $\Omega_{CDM} = 26.4\%$ [1]. Такой тип скрытой массы характеризуется тем, что в момент выхода из температурного равновесия с барионным веществом, её частицы были нерелятивистскими.

Кандидаты на роль скрытой массы [1] (рисунок 1):

- MACHO (massive astrophysical compact halo object);
- WIMP (weakly interacting massive particle)
- аксионы;
- тёмные фотоны;
- нейтрино;
- кандидаты из теорий суперсимметрии;
- экзотические кандидаты.

Рисунок 1 — Типы скрытой массы [2]

Основная проблема проверки гипотез, относящихся к физике частиц: наблюдение частиц скрытой массы затруднено в связи с малостью сечения их взаимодействия с барионной материей. Новые результаты эксперимента XENONnT исключают существование частиц типа WIMP на уровне сечения их взаимодействия с нуклонами $\sigma \sim 2,58 \cdot 10^{-47}$ см² (для частиц массой M = 30 ГэB) [3].

ТЁМНЫЕ БОЗОНЫ

Некоторые гипотезы предполагают существование не одного вида частиц скрытой массы, а многих. В простейшем случае рассматриваются частицы типа WIMP, взаимодействующие между собой посредством тёмного бозона – лёгкой массивной частицы [4]. Предполагается, что тёмные векторные бозоны кинетически связаны с фотонами Стандартной Модели и потому могут участвовать в процессах типа комптоновского рассеяния, наряду с взаимодействиями частиц скрытой массы (рисунок 2).

Рисунок 2 — Возможные каналы взаимодействия тёмных бозонов Х: взаимодействия частиц скрытой массы посредством тёмного бозона (а), процесс типа комптон-эффекта на частице Стандартной Модели с поглощением тёмного бозона и излучением фотона

Рассматриваемые типы тёмных бозонов:

- векторный бозон (тёмные фотоны);
- псевдоскалярный бозон (аксионоподобные частицы);
- скалярный бозон (лёгкие бозоны Хиггса);

Соответствующие вклады тёмных бозонов в лагранжиан теории [5]:

$$\mathcal{L} \supset -\frac{1}{4}X_{\mu\nu}X^{\mu\nu} + \frac{1}{2}m_X^2 X^\mu X_\mu - g_X \bar{e}\gamma^\mu e X_\mu; \tag{1}$$

$$\mathcal{L} \supset \frac{1}{2}m_X^2 X^2 - g_X \bar{e}\gamma^5 eX; \tag{2}$$

$$\mathcal{L} \supset \frac{1}{2}m_X^2 X^2 - g_X \bar{e}eX,\tag{3}$$

где X_{μ}, X – поля тёмных бозонов, $X_{\mu\nu} \equiv \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}, m_X$ – масса тёмного бозона, g_X – константа связи тёмного бозона с фермионными токами Стандартной Модели.

Так как тёмные бозоны образуются при взаимодействии гамма-квантов с веществом, а ядерные реакторы являются сильным источником гаммаквантов, то предлагается искать события, вызванные тёмными бозонами с помощью экспериментов расположенных в непосредственной близости от активной зоны ядерного реактора (например эксперименты NEOS, TEXONO[6] и планируемый TAO[5]).

ДЕТЕКТОР IDREAM

Детектор iDREAM (industrial Detector of REactor Antineutinos for Monitoring) – экспериментальный образец промышленного детектора реакторных антинейтрино для мониторинга работы реакторов ядерных станций, разработанный и реализованный в НИЦ «Курчатовский Институт» совместно с НИИЯФ МГУ имени Д. В. Скобельцына [7].

Детектор представляет собой два концентрических бака из нержавеющей стали, накрытые общей герметичной крышкой (рисунок 3). Мембрана из оргстекла разделяет внутренний бак на две части. Верхняя часть заполнена линейным алкилбензолом (ЛАБ), а нижняя - гадолинизированным жидким органическим сцинтиллятором (ЖОС). Внутренний бак просматривается 16 фотоэлектронными умножителями (ФЭУ) и является мишенью детектора. Внешний кольцевой бак заполнен ЖОС, просматривается 12 ФЭУ и выполняет роль активной защиты мишени детектора.

Сбор данных начался в 2021 году. В настоящее время детектор расположен на Калининской АЭС.

Рисунок 3 — Схема детектора iDREAM [7]

1 РАСЧЁТ ОЖИДАЕМОГО ЧИСЛА СОБЫТИЙ

1.1 СПЕКТР РОЖДЁННЫХ ТЁМНЫХ БОЗОНОВ

Предполагается, что тёмный бозон X рождается в реакции типа комптоновского рассеяния реакторного гамма-кванта γ на покоящемся электроне вещества реактора (рисунок 1.1)

Рисунок 1.1 — Реакции образования тёмного бозона в веществе реактора (а) и его поглощения в детекторе (б)

Энергетический спектр тёмных бозонов, вылетающих из активной зоны peaktopa:

$$\frac{\mathrm{d}N}{\mathrm{d}E_X} = \int \frac{1}{\sigma_{\mathrm{tot}} + \sigma_{\gamma e \to Xe}} \frac{\mathrm{d}\sigma_{\gamma e \to Xe}}{\mathrm{d}E_X} \frac{\mathrm{d}N}{\mathrm{d}E_\gamma} \mathrm{d}E_\gamma, \qquad (1.1)$$

где E_X – энергия образованного тёмного бозона, σ_{tot} – полное сечение взаимодействия гамма-квантов с материалами детектора, $\sigma_{\gamma e \to Xe}$ – полное сечение процесса типа комптон-эффекта, в котором поглощается гаммаквант и рождается тёмный бозон (зависит от типа тёмного бозона), $\frac{d\sigma_{\gamma e \to X e}}{dE_X}$ – дифференциальное сечение образования тёмного бозона в процессе типа комптон-эффекта, $\frac{dN}{dE_{\gamma}}$ – энергетический спектр гамма квантов, образующихся в реакторе, взятый аналогично [5]:

$$\frac{\mathrm{d}N}{\mathrm{d}E_{\gamma}} = 0.58 \cdot 10^{18} \cdot \mathbf{P} \cdot e^{-1.1E_{\gamma}} \tag{1.2}$$

Здесь Р – мощность реактора в МВт (для Калининской АЭС Р \approx 3100 МВт), E_{γ} – энергия гамма кванта в МэВ.

Также из кинематики реакции следует

$$E_{\gamma} = \frac{-\frac{1}{2}m_X^2 + E_X m_e}{m_e - E_X + \cos\theta \cdot \sqrt{E_X^2 - m_X^2}}$$
(1.3)

Здесь *θ* – угол между импульсами исходного гамма-кванта и образовавшегося тёмного бозона. Используя выражение **1.3**, можно получить пределы интегрирования для формулы (**1.1**).

1.2 ОЖИДАЕМЫЙ В ДЕТЕКТОРЕ IDREAM ЭНЕРГЕТИЧЕСКИЙ СПЕКТР

Предполагается, что тёмный бозон поглощается покоящимся электроном вещества детектора с испусканием вторичного гамма-кванта γ' (рисунок 1.1). Образованные в процессе электрон отдачи и вторичный гаммаквант регистрируются детектором как одиночное событие с энергией $E_{ev} = T_e + E_{\gamma'} = E_X$.

Тогда энергетический спектр регистрируемых событий в предположении изотропного разлёта тёмных бозонов:

$$\frac{\mathrm{d}N}{\mathrm{d}E_{ev}} = \frac{\mathrm{d}N}{\mathrm{d}E_X} = \frac{N_e T}{4\pi R^2} \int \frac{\mathrm{d}\sigma_{Xe\to\gamma'e}}{\mathrm{d}E_{\gamma'}} \frac{\mathrm{d}N}{\mathrm{d}E_X} \mathrm{d}E_{\gamma'}$$
(1.4)

Здесь N_e – плотность электронов в веществе детектора в тоннах⁻¹, T – время экспозиции, R – расстояние от реактора до детектора (iDREAM установлен на расстоянии 19.6 м от реактора Калининской АЭС), $\frac{d\sigma_{Xe \to \gamma' e}}{dE_X}$ – дифференциальное сечение процесса типа комптон-эффекта, $E_{\gamma'}$ – энергия образованного гамма-кванта.

Пределы интегрирования формулы (1.4) можно получить из кинематического соотношения

$$E_{\gamma'} = \frac{-\frac{1}{2}m_X^2 - E_X m_e}{m_e + E_X - \cos\phi \cdot \sqrt{E_X^2 - m_X^2}},$$
(1.5)

где ϕ – угол между импульсами тёмного фотона и вторичного гаммакванта.

Рисунок 1.2 — Ожидаемые энергетические спектры событий для векторных бозонов (слева), псевдоскалярных бозонов (в центре) и скалярных бозонов (справа) с массами $m_X = 10^{-16}$ МэВ и $m_X = 1$ МэВ, в предположении $g_X = 1$, P = 3090 МВт, T = 1 с

Для нахождения ожидаемой скорости счёта необходимо проинтегрировать полученные энергетические спектры в исследуемом окне энергий, которое в данном исследовании выбрано так: $E_{ev} \in [3; 10]$ МэВ.

2 ОТБОР СОБЫТИЙ

2.1 КРИТЕРИИ ОТБОРА

Для отбора событий были использованы следующие критерии:

- мюонное вето: после регистрации мюона вводится мёртвое время 150 мкс;
- отбор одиночных событий: во временном окне ± 100 мкс нет других событий;
- энергия события $E_{ev} \in [3; 10]$ МэВ

2.2 МЕТОДИКА ОТБОРА

Искомые события возникают только при включенном реакторе, поэтому были исследованы два набора данных: при включенном (3.7742 · 10⁸ событий за 60 суток живого времени) и при выключенном (3.0404 · 10⁸ событий за 49 суток живого времени) реакторе.

Затем полученные энергетические спектры событий были преобразованы в энергетические спектры скоростей счёта и вычтены для получения скорости счёта событий, источником которых является реактор.

2.3 ΟЦΕΗΚΑ ΦΟΗΑ

Для используемых критериев отбора фоновыми событиями являются флуктуации одиночных событий, не зависящие от мощности реактора: флуктуации эффективности регистрации событий, связанные с её зависимостью от температуры сцинтиллятора, флуктуации числа одиночных событий от радиоактивных изотопов в материалах детектора и т. д.

Была исследована флуктуация скорости счёта одиночных событий,

удовлетворяющих критериям отбора и построена гистограмма скоростей счёта (рисунок 2.1). Скорость счёта фоновых событий была моделирована случайной величиной со средним значением 0 и дисперсией, равной дисперсии распределения скоростей счёта одиночных событий при выключенном реакторе.

Рисунок 2.1 — Распределение скоростей счёта при выключенном реакторе

Для увеличения отношения сигнал/фон, были рассмотрены энергетические спектры скорости счёта одиночных событий при выключенном реакторе для каждого рана. Затем для уменьшения систематической погрешности были отброшены те раны, в которых скорость счёта в энергетическом бине отличалась от среднего значения более, чем на 3σ . При этом удалось уменьшить флуктуацию фоновой скорости счёта с $0.73c^{-1}$ до $0.36c^{-1}$, то есть в два раза.

2.4 ОЦЕНКА ПОГРЕШНОСТЕЙ

В данном анализе присутствуют систематические погрешности, связанные с флуктуациями мощности реактора и числа фоновых событий, а также статистические погрешности.

Как видно из раздела 2.3, наибольший вклад вносит относительная систематическая погрешность фона: $\sigma_{bkq} = 1$, в то время как другие отно-

сительные погрешности: флуктуация мощности реактора и статистическая погрешность – находятся на уровне $\sim 10^{-3}$ и 10^{-5} соответственно. Поэтому именно флуктуации числа фоновых событий будут оказывать наибольшее влияние на получаемые ограничения на параметры модели.

З ПОЛУЧЕНИЕ ОГРАНИЧЕНИ

При известных систематических погрешностях (раздел ??), ожидаемых скоростях счёта и экспериментальных результатах отбора для уровня достоверности $\alpha = 95\%$ можно получить ограничения на параметры модели: m_X и g_X .

Построена статистическая модель:

$$N_{pred}(m_X, g_X, \theta_P, \theta_{bkg}) = N_s(m_X, g_X)(1 + \theta_P \sigma_P) + N_{bkg} \theta_{bkg} \sigma_{bkg}$$
(3.1)

Здесь N_s – теоретическое число сигнальных событий; θ_P – случайная величина ~ N(0,1), отвечающая за флуктуации мощности реактора; $\sigma_P = 2 \cdot 10^{-3}$ – относительная погрешность мощности реактора; $N_{bkg}\sigma_{bkg} = 0.73*T$ – дисперсия числа фоновых событий, T – живое время сбора данных; θ_{bkg} – случайная величина ~ N(0,1), отвечающая за флуктуации числа фоновых событий.

Функция правдоподобия:

$$L(m_X, g_X, \theta_P, \theta_{bkg}) = \frac{N_{pred}^{N_{obs}}}{N_{obs}} e^{-N_{pred}} \frac{1}{\sqrt{2\pi}} e^{\frac{-\theta_P^2}{2}} \frac{1}{\sqrt{2\pi}} e^{\frac{-\theta_{bkg}^2}{2}}$$
(3.2)

Используемая тестовая статистика:

$$t_{m_X,g_X} = -2 \ln \left(\frac{L(m_X, g_X, \hat{\hat{\theta}}_P, \hat{\hat{\theta}}_{bkg})}{L_{max}} \right)$$
(3.3)

Здесь $\hat{\theta}_P, \hat{\theta}_{bkg}$ – значения соответствующих случайных величин, максимизирующие функцию правдоподобия при фиксированных $m_X, g_X; L_{max}$ – абсолютный максимум функции правдоподобия. Уравнение на ограничения физических параметров модели:

$$\Phi(\sqrt{t_{m_X,g_X}}) = \frac{1+\alpha}{2} \tag{3.4}$$

Здесь $\Phi(\mathbf{x})$ – функция распределения вероятности для стандартного распределения.

Рисунок 3.1 — Ограничения на массу тёмных бозонов m_X и константу связи со Стандартной Моделью g_X , полученные для iDREAM и NEOS[6], а также чувствительность ТАО (Тайшаньской антинейтринной обсерватории)[5] к тёмным бозонам на уровне достоверности 95%

Как видно из рисунка 3.1, полученные в этой работе ограничения являются менее строгими, чем ограничения для эксперимента NEOS.

4 ЗАКЛЮЧЕНИЕ

- Рассчитаны ожидаемые спектры событий от взаимодействия темных бозонов в детекторе iDREAM.
- Установлены ограничения на массу m_X и константу взаимодействия g_X со Стандартной Моделью для тёмных бозонов. Результаты iDREAM незначительно уступают результатам, полученным по данным детектора NEOS [6], и результатам, ожидаемым в JUNO TAO [5].

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Workman R. L. [и др.]. Review of Particle Physics // РТЕР. 2022. T. 2022. — C. 083C01.
- Deliyergiyev M. Recent Progress in Search for Dark Sector Signatures // Open Physics. - 2016. - T. 14.
- First dark matter search with nuclear recoils from the XENONnT experiment / E. Aprile [и др.] // Physical Review Letters. — 2023. — Т. 131, № 4. — C. 041003.
- 4. Filippi A., De Napoli M. Searching in the dark: the hunt for the dark photon // Reviews in Physics. 2020. T. 5. C. 100042.
- Light dark bosons in the JUNO-TAO neutrino detector / M. Smirnov [и др.] // Physical Review D. — 2021. — Т. 104, № 11. — С. 116024.
- Park H. Detecting dark photons with reactor neutrino experiments // Physical Review Letters. - 2017. - T. 119, № 8. - C. 081801.
- Промышленный детектор iDREAM для мониторинга режимов работы атомных реакторов нейтринным методом / М. Б. Громов [и др.] // Вестник Московского университета. Серия 3. Физика. Астрономия. — 2015. — № 3. — С. 26—31.