МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ» (НИЯУ МИФИ)

ИНСТИТУТ ЯДЕРНОЙ ФИЗИКИ И ТЕХНОЛОГИЙ КАФЕДРА №40 «ФИЗИКА ЭЛЕМЕНТАРНЫХ ЧАСТИЦ»

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА К МАГИСТЕРСКОЙ ДИПЛОМНОЙ РАБОТЕ РЕГИСТРАЦИЯ МЮОНОВ КОСМИЧЕСКИХ ЛУЧЕЙ НА ПОДЗЕМНОМ ДЕТЕКТОРЕ БОЛЬШОГО ОБЪЕМА

Студент Научный руководитель, к. ф.-м. н. О. Ю. Слуцкая

<u>ф.</u>Н.Ю. Агафонова

Москва 2023

СОДЕРЖАНИЕ

BB	ЕДЕ	НИЕ	3
	АКТ	УАЛЬНОСТЬ	3
	ЦЕЛ	Ь РАБОТЫ	3
1 B	ЗАИ	МОДЕЙСТВИЕ МЮОНОВ ПОД ЗЕМЛЕЙ	4
	1.1	Мюоны	4
	1.2	Взаимодействие мюонов	5
	1.3	Расчет ионизационных потерь	6
2	МЮ	ОННАЯ ФИЗИКА НА LVD	7
	2.1 P	егистрация мюонов на установке LVD	7
	2.2	Изменение потока мюонов с глубиной	9
	2.3	Вариации интенсивности полного потока мюонов1	0
3 C	опис	САНИЕ УСТАНОВКИ 1	1
	3.1 3	⁷ становка LVD1	1
4. (ЭБРА	АБОТКА И АНАЛИЗ ДАННЫХ1	3
	4.1 A	Анализ зарегистрированных событий в LVD1	3
3A	КЛЮ	ЧЕНИЕ1	4
СП	ИСО	К ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ1	5

ВВЕДЕНИЕ

Основной целью эксперимента LVD (Детектор большого объема) является поиск всплесков нейтринного излучения, возникающих при гравитационных коллапсах звездных ядер в конце их эволюции. Установка также регистрирует проникающую компоненту космического излучения – мюоны и продукты их взаимодействия под землей.

Интерес к проникающей компоненте космического излучения связан как с астрофизическим аспектом (происхождение и распространение первичных космических лучей, источники нейтринного излучения и т.д.), так и с возможностью изучения свойств частиц (сечения взаимодействия, осцилляции нейтрино и т.д.).

АКТУАЛЬНОСТЬ

Одной из важных экспериментальных задач, решаемых в эксперименте LVD, является изучение мюонов космических лучей. Изучение атмосферных мюонов на больших глубинах под землей позволяет получить информацию о первичном спектре космических лучей и взаимодействиях элементарных частиц при высоких энергиях. Кроме того, проникающая компонента является фоном для экспериментов по поиску редких событий, проводимых глубоко под землей.

ЦЕЛЬ РАБОТЫ

Целью данной работы является получение и анализ характеристик атмосферных мюонов. Для этого изучается принцип работы установки LVD, позволяющей регистрировать высокоэнергетичные мюоны и записывать данные по мюонным событиям. По анализу полученных данных определяются

3

основные параметры мюонов, проходящих через установку. Это позволяет в дальнейшем реконструировать события, определять их тип, множественность и получать определенные зависимости.

1 ВЗАИМОДЕЙСТВИЕ МЮОНОВ ПОД ЗЕМЛЕЙ

1.1 Мюоны

Мюоны были впервые обнаружены в космических лучах американскими физиками К. Андерсоном и С. Неддермейером и Стритом и Стивенсоном в 1936 – 1938 гг. [1]

Мюоны – частицы, относящиеся к классу лептонов, то есть к частицам, участвующим в слабом (посредством обмена W^{\pm} и Z^{0} бозонами) и электромагнитном (посредством обмена γ (фотоном)) взаимодействии. Лептоны включают в себя три поколения частиц, мюон принадлежит второму поколению $\binom{V_{\mu}}{\mu^{-}}$. Спин мюона равен 1/2, следовательно, мюон принадлежит к фундаментальному классу частиц стандартной модели – фермионам.

Мюоны рождаются в результате прохождения первичных космических лучей сквозь атмосферу Земли. Первичный нуклон при взаимодействии с ядрами атомов воздуха начинает распадаться на вторичные частицы, образуя широкий атмосферный ливень протяженностью 6 км. Образование мюонов происходит в результате распада заряженных пионов или каонов:

$$\pi^+(\mathbf{K}^+) \rightarrow \mu^+ + \upsilon_{\mu}, \qquad \pi^-(\mathbf{K}^-) \rightarrow \mu^- + \overline{\upsilon}_{\mu}.$$
 (1)

4

Данные распады можно проиллюстрировать диаграммами Фейнмана:

Рисунок 1.1 – Диаграммы распада положительно заряженных пиона и каона (для отрицательно заряженных частиц будут аналогичные диаграммы, только с обменом W⁻ - бозоном).

Оба процесса идут по слабому взаимодействию с обменом W⁺ - бозоном . Рождение мюона μ^- (μ^+) протекает совместно с образованием нейтрального партнера – антинейтрино \tilde{v}_{μ} (v_{μ}). При этом вероятность распада пиона на μ^- (μ^+) и \tilde{v}_{μ} (v_{μ}) примерно на 40% выше, чем распады каона на те же частицы.

Рождающиеся в атмосфере мюоны теряют часть своей энергии, в основном, на ионизацию атомов среды. При бо́льших энергиях мюонов потери происходят за счет образование электрон-позитронных пар, испускания гамма-квантов и глубоко неупругого взаимодействия.

1.2 Взаимодействие мюонов

Слабые взаимодействия мюонов вызывают их распад по схеме:

$$\mu^+ \to e^+ + \nu_e + \nu_\mu \tag{2}$$

$$\mu \to e^{\bar{}} + \nu_e + \nu_\mu \,. \tag{3}$$

Эти распады и определяют время жизни мюонов в вакууме. В веществе µ⁻ живет меньше: останавливаясь, он притягивается положительно заряженным ядром и образует так называемый мюонный атом или мезоатом – систему, состоящую из атомного ядра, мюона и электронной оболочки. В мезоатомах благодаря слабому взаимодействию может происходить процесс захвата µ⁻ ядром:

$$\mu +_{z} A \to_{z-1} B + \nu_{\mu} . \tag{4}$$

Этот процесс аналогичен К-захвату электронов ядром и сводится к элементарному взаимодействию

$$\mu + p \to n + \nu_{\mu} \tag{5}$$

Вероятность захвата μ ядром растет для легких ядер пропорционально Z^4 и при $Z\approx10$ сравнивается с вероятностью распада μ . В тяжелых элементах время жизни останавливающихся мюонов определяется в основном вероятностью их захвата ядрами и в 20 – 30 раз меньше их времени жизни в вакууме [1].

Не обладая сильными взаимодействиями, мюоны высоких энергий тормозятся в веществе только за счет электромагнитных взаимодействий с электронами и ядрами вещества. До энергий порядка $10^{11} - 10^{12}$ эВ мюоны теряют энергию в основном на ионизацию атомов среды, а при более высоких энергиях становятся существенными потери энергии за счет рождения электрон-позитронных пар, испускания у-квантов тормозного излучения и фотоядерных взаимодействий. Так как масса мюона много больше массы электрона, то потери энергии быстрых мюонов на тормозное излучение и рождение пар значительно меньше, чем потеря энергии быстрых электронов на тормозное излучение (или γ -квантов на рождении пар e^+e^-). Эти факторы обусловливают высокую проникающую способность мюонов как по сравнению с адронами, так и по сравнению с электронами и γ -квантами. В результате мюоны космических лучей не только проникают через атмосферу Земли, но и углубляются (в зависимости от их энергии) на довольно значительное расстояние в грунт. В подземных экспериментах мюоны космических лучей с энергией $10^{11} - 10^{12}$ эВ регистрируются на глубине нескольких километрах [2].

1.3 Расчет ионизационных потерь

Ионизационные потери высокоэнергетичных мюонов рассчитываются по следующей формуле:

$$\left(-\frac{d E}{dx}\right)_{\mu_{0HH3}} = \frac{L}{\beta^2} \left[B + 0.69 + 2\ln\left(\frac{p}{m_{\mu}c^2}\right) + \ln\left(\frac{E'_m}{m_{\mu}c^2}\right) - 2\beta^2 - \delta\right], \quad (6)$$

где $E'_m = \frac{p^2 c^2}{E + (m_{\mu}^2 c^2 / 2m_e)}, \quad p = \sqrt{T(T + 2m_{\mu}c^2)}, \quad \delta = 4,606 \log\left(\frac{p}{m_{\mu}c}\right) - c.$

Энергия мюонов, проходящих через установку LVD имеют среднюю энергию ~ 280 ГэВ ($E_{\mu} > m_{\mu}c^2$), тогда при подстановке параметров в формулу (6) получим $\left(-\frac{dE}{dx}\right)_{\mu o \mu u 3} = 2.49 \frac{M 3 B}{\Gamma \times c M^{-2}}$ – среднее значение потерь мюонов в сцинтилляторе.

2 МЮОННАЯ ФИЗИКА НА LVD 2.1 Регистрация мюонов на установке LVD

Установка LVD находится под горным массивом, что ограничивает проникающую способность мюонов. Установки достигают только высокоэнергетичные мюоны с энергией ~ 280 ГэВ. Мюоны, регистрируемые установкой LVD, создают фон в экспериментах по поиску редких событий.

При прохождении мюонов через установку происходит энерговыделение в счетчике. Если энерговыделение составляет ≥5 МэВ, то происходит регистрация частицы. Событие в LVD считается мюонным, если срабатывает не менее двух счетчиков при суммарном энерговыедлении во всех счетчиках не менее 55 МэВ.

Далее происходит реконструкция события (восстановление треков частиц). События делятся на события с одиночным мюоном, группой мюонов и мюоном в сопровождении электромагнитного каскада.

Так как горный массив, под которым находится установка неоднороден, то мы имеем разную интенсивность в зависимости от угла прихода мюонов

(Рис. 2.1.1). Максимальная интенсивность соответствует углу прихода $\theta = 25^{\circ} - 31^{\circ}$.

Рисунок 2.1.1 – Зависимость интенсивности от угла прихода мюонов Возможны событие как с участием почти вертикальных (Рис. 2.1.2 (а)), так и почти горизонтальных мюонов (Рис. 2.1.2 (б)).

Рисунок 2.1.2 – Возможные варианты прохождение мюонов через установку Почти вертикальные мюоны имеют среднюю энергию $\langle E_{\mu} \rangle \approx 280$ ГэВ, угол прихода $\langle \theta \rangle = 13^{\circ}$, глубина регистрации – 3.3 км.в.э. Почти горизонтальные мюоны имеют иные характерные параметры: $\langle E_{\mu} \rangle \approx 340$ ГэВ, $\langle \theta \rangle = 75^{\circ}$, глубина регистрации – 5 км.в.э. Так как имеется много почти вертикальных мюонов, форму спектра энерговыделений имеет характерный пик на 180 МэВ (Рис. 2.1.3) при диапазоне возможных энергий (20 - 450) МэВ.

Рисунок 2.1.3 – Энерговыделение в счетчике при прохождении почти горизонтальных мюонов.

Для вертикальных мюонов средняя длина трека в счетчике – 1 м, для горизонтальных мюонов – 1.5 м.

2.2 Изменение потока мюонов с глубиной

С глубиной поток мюонов уменьшается как показано на рисунке 2.2.1.

Рисунок 2.2.1 – Интенсивность вертикальных мюонов как функция глубины На глубине (12 – 14) м.в.э. мы регистрируем уже не атмосферные мюоны, а мюоны, образовавшиеся в результате распада нейтрино.

2.3 Вариации интенсивности полного потока мюонов

Интенсивность потока мюонов меняется в зависимости от времени года (Рис. 2.3.1 – измерения, полученные на детекторе LVD [3]). Летом можно наблюдать усиление интенсивности, а зимой наоборот – уменьшение. Это связано, в первую очередь, с ростом температуры и как следствие – расширением атмосферы. Зависимость, показанная на графике получена при анализе 2.5 миллионов мюонных событий с периодом 8 лет.

Рисунок 2.3.1 – Вариация интенсивности потока мюонов

3 ОПИСАНИЕ УСТАНОВКИ

3.1 Установка LVD

Установка LVD (Large Volume Detector) располагается в Италии в подземной лаборатории Гран Сассо под горным массивом на высоте 960 метров над уровнем моря. Средняя толщина горы над лабораторией ~ 1.4 км, что обеспечивает подавление потока мюона почти в миллион раз.

Установка состоит из трех башен, отстоящих друг от друга на 2 метра. Башни установки имеют модульную структуру. Каждая из башен состоит из 5 колонн, включающих в себя 56 сцинтилляционных счетчика. Вся установка включает в себя 840 счетчиков (Рис.3.1.1). Некоторые характеристики детектора представлены в таблице 1.

Длина	22.7 метров
Ширина	13.2 метра
Высота	10 метров
Масса железа (сцинтилляционные контейнеры и поддерживающая структура)	1020
	1020 тонн
Масса всего сцинтиллятора Состав сцинтиллятора Плотность сцинтиллятора	966 тонн C _n H _{2n} (<n>=9.6)+1 г/л РРО + 0.03г/л РОРОР ~ 0.78 г/см³</n>
Число сцинтилляционных счетчиков	840 штук
Число РМТs (ФЭУ)	2520

Табл.3.1. Характеристики установки

Рисунок 3.1.1 – Башни установки LVD

Ориентация башен выбрана перпендикулярно направлению на ЦЕРН.

Основной задачей эксперимента LVD является долговременный поиск нейтринных всплесков от гравитационных коллапсов звездных ядер [4]. LVD также располагает широкими возможностями для изучения мюонов космических лучей под землей. Детектор расположен на средней по потоку мюонов глубине 3720 ± 190 м.в.э. Средняя энергия потока мюонов составляет 280 ГэВ, вертикальная интенсивность мюонов $I_{\mu} = (3.31 \pm 0.03) \times 10^4 \frac{1}{M^2 \times c^2}$ [5].

Сцинтилляционные счетчики LVD, из которых состоят башни представляют собой железные контейнеры размером ($100 \times 150 \times 100$) см³ и объемом 1.5 м³. Корпус счетчиков сделан из нержавеющей стали. Внутри находится жидкий сцинтиллятор, масса которого ~ 1170 кг. Общая масса сцинтиллятора установки ~ 1000 т. Плотность вещества сцинтиллятора р = 0.78 г/см³.

4. ОБРАБОТКА И АНАЛИЗ ДАННЫХ 4.1 Анализ зарегистрированных событий в LVD

Данные по событиям в LVD записываются в виде файла из столбцов. Каждый столбец определяет свой собственный параметр. Рассмотрим полученные данные на примере мюонного события номер 55043 (Рис. 4.1.1). Четыре цифры в первом столбце определяют точное положение счетчика, зарегистрировавшего частицу (1 – номер башни, 2 – номер колонны, 3 – уровень, 4 – номер счетчика). Второй столбец – относительное время (в нс). Время регистрации события откладываются сверзу по горизонатали. В нашем случае 4 – число, 10 – месяц, 21 – год, 14 – час, 32 – минута, 28 – секунда. Третий столбец – энергия мюонов в каналах. Четвертый столбец – триггер (показывает через какие из счетчиков прошел мюон и дал энерговыделение больше 5 МэВ). Видно, что в нашем случае мюон прошел через счетчики 2213, 2324, 2331, 2442 и 2441. Пятый столбец – энергия мюонов в Мэв. Можно видеть, что энерговыделение в других счетчиках также присутствует, но оно связано с мюонным сопровождением – энерговыделением от взаимодействия вторичных частиц – электронов, нейтронов, гамма-квантов. Событие событием, считается мюонным если два счетчика регистрируют энерговыделение не менее 20 Мэв в течении 250 нс. Последняя цифра в первой строчке события – 17 – характеризует число счетчиков.

55043	529 0 4 10	21 14 32 28 20218	52348.4578363052	17
2111	0.4579135625	13.7300000191	0.0 1.23870	
2116	0.4580271500	19.6500000060	0.0 1.34057	
2118	0.4580619250	38.6700000763	0.0 2.63817	
2213	0.4578352000	2267.6980882666	1.0 204.58815	
2316	0.4581717125	11.1099996567	0.0 0.70153	
2316	0.4582524625	22.1099996567	0.0 1.39611	
2324	0.4578352000	2697.8046773424	1.0 216.00627	
2324	0.4578373000	66.9332147136	0.0 5.35917	
2324	0.4578384625	56.9780758794	0.0 4.56209	
2132	0.4578796125	15.0799999237	0.0 1.36049	
2131	0.4580910250	3495.0790406821	0.0 0.00000	
2522	0.4578626500	41.9714158450	0.0 14.16442	
2331	0.4578351875	2856.9219252495	1.0 209.41943	
2442	0.4578351875	2454.3798038851	1.0 179.91210	
2441	0.4578352125	402.1379061399	1.0 31.52071	
2442	0.4578478125	5.7299995422	0.0 0.42002	
2444	0.4586535000	18.1599998474	0.0 1.39241	

Рисунок 4.1.1 – Данные события в LVD

ЗАКЛЮЧЕНИЕ

Основные результаты работы, полученные в данной работе, можно сформулировать следующим образом:

- 1. Детектор LVD является хорошим инструментом для исследований мюонов космических лучей, приходящих на глубину от 3 до 12 км в.э.
- 2. Имеется обширная статистика за период с 2001 по 2022 год, когда ввели в строй набора статистики три башни установки.
- Анализируя экспериментальные данные, можно получить такие характеристики мюонов, как их интенсивность, угловое и энергетическое распределение, кратность мюонных групп и кривую раздвижения (распределение по расстоянию мюонов в группах).

На данном этапе велся отбор и реконструкция мюонных событий за 2022 год.

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. А.О. Вайсенберг, Мю-мезон, -М, 1964 г.
- 2. Ю.М. Андреев, Э.В. Бугаев, Тормозные потери энергии мюонов в грунте.-Известия АН СССР, Серия физическая., 42 (1978), с. 1475-1478
- Агафонова Н.Ю., Бояркин В.В., Дадыкин В.Л., Добрынина Е.А., Еникеев Р.И., Мальгин А.С., Рясный В.Г., Ряжская О.Г., Шакирьянова И.Р., Якушев В.Ф. и Коллаборация LVD, Анализ сезонных вариаций потока мюонов космических лучей и нейтронов, генерированных мюонами, в детекторе LVD, Изв. РАН Сер. Физ., т. 75, №3, (2011), 456-459
- Implication for the core-collapse supernova rate from 21 years of data of the Large Volume Detector / N.Y. Agafonova et al. (LVD Collaboration) //The Astrophysical Journal, 802:47 (9pp), 2015 March 20.
- Characterization of the varying flux of atmospheric muons measured with the Large Volume Detector for 24 years / N. Agafonova et al. (LVD Collaboration) //Phys. Rev. D 100, 062002 (2019), DOI: 10.1103/PhysRevD.100.062002.