REPORT

Выбор материалов для прототипа сцинтилляционного детектора локальной поляриметрии SPD Beam-Beam Counter

Научный руководитель: Тетерин П. Е.

Студент М22-115 Захаров А. М. ИЯФиТ

г. Москва, 2024

Экспериментальная установка

Spin Physics Detector (SPD) - эксперимент в NICA (ОИЯИ, Дубна), предназначенный для изучения спиновой структуры протона и дейтрона и других спиновых явлений, используя уникальную возможность работы с поляризованными пучками протонов и дейтронов при энергии столкновений до 27 ГэВ и светимости до 10³² см⁻² с⁻¹.

поляризованных В протон-протонных ٠ столкновениях данный эксперимент покроет кинематический разрыв низкоэнергетическими измерениями между В ANKE-COSY SATURNE. И экспериментах И высокоэнергетическими измерениями, полученными на БАК

- Два торцевых детекторных колеса сцинтилляционных счетчиков Beam-Beam Counters (BBCs) планируется установить перед TOF системой установки SPD симметрично относительно точки взаимодействия.
- Детектор будет состоять из внутренней и внешней частей: внутренние МСР и внешняя часть из быстрых сцинтилляционных тайлов.

Основными задачами Beam-Beam Counters являются:

- Локальная поляриметрия в SPD, основанная на измерениях азимутальных асимметрий поляризованных протонных пучков;
- Мониторинг столкновений пучков;

Экспериментальная установка

- SPD BBC будет состоять из 16 секторов с 25 тайлами в каждом секторе в одном колесе. Каждый тайл представляет собой отдельный источник сигнала, считывающийся с помощью кремниевого фотоумножителя (SiPM), подключенного к оптоволокну WLS.
- Количество каналов считывания наводит нас на использование FEE системы считывания CAEN FERS-5200, разработанной специально для больших массивов детекторов.
- Каждая плата вмещает 64 канала и включает в себя FEE электронику, АЦП, триггерную логику, синхронизацию, локальную память и интерфейс считывания.

- Для исследований на космическом излучении используется внешняя триггерная система, основанную на двух сцинтилляторах 10×10 см² со считывающими РМТ Hamamatsu H10720-110 и временным разрешением ~650 пс.
- Концентратор DT5215 используется для возможности расширения количества каналов до 8192

Выбор материала: общее

Геометрия семи тайлового прототипа, используемого в данной работе

Выбор материалов и тестирование различных композиций для прототипа сцинтилляционного детектора включает сравнения:

Покрытие сцинтиллятора: Оптический клей: Оптоволокно: SiPMs:

Матированный VS покрытый Tyvek CKTH MEД VS OK-72 Saint-Gobain Crystals VS Kuraray 3x3 VS 1x1 mm²

Выбор материала: матированный VS Tyvek

Сравнение матированных (фиолетовый) и покрытых Tyvek (зеленый) тайлов для а) ряда 1 b) ряда 3

3x3 SensL SiPM

функций Гаусса и Ландау в качестве фитирующей

Fit Param-s	Row 1 Matted	Row 1 Tyvek	Row 3 Matted	Row 3 Tyvek
Mean, Channels	372.9	346.7	406.9	348.3
Width, Channels	28.5	30.0	30.3	27.5

Из-за более высокого значения положения пика (разница в положениях от 7% и до 15%), а также сравнительной простоты в условиях массового производства матированных тайлов по сравнению с Tyvek покрытием, вариант с матированными тайлами является более предпочтительным

Выбор материала: СКТН МЕД Е VS ОК-72

ряда 3, 70/30 в соотношении А и В (б)

3x3 SensL SiPM

Для исследования мы использовали матированные тайлы и различные составы компонентов А/В для клея ОК-72: 76.24/23.66 (datasheet) и 70/30. Что касается СКТН, то в обоих случаях и для всех сравнений использовали МЫ одинаковое соотношение 100/3.2 (datasheet).

Fit Param-s	Row 1 CKTN	Row 1 OK-72	Row 3 CKTN	Row 3 OK-72
Mean, Channels	372.9	254.4	406.9	412.3
Width, Channels	28.5	17.6	30.3	36.2

Небольшое различие в соотношении составов клея может критически влиять на светосбор. Для подтверждения гипотезы испытали составы 70/30, 76.24/23.66 и 80/20 ОК-72

Выбор материала: СКТН МЕД Е VS ОК-72

a) Сравнение составов ОК-72 А/В: 70/30 (синий), 76,24/23,66 (желтый) и 80/20 (красный);

b) Зависимость средней амплитуды от процентного содержания компонента А

По результатам исследования стало ясно, что среди протестированных смесей ОК-72 наилучший 76,24/23,66 результат показывает состав (в соответствии с паспортными данными), однако компонентов соотношение оказывает не существенного влияния на светосбор.

Fit Param-s	70/30	76.24/23.66	80/20
Mean, Channels	237.8	284.4	242.7
Width, Channels	22.1	26.0	20.4

Лучшее соотношение компонентов клея – 76.24/23.66 (datasheet) Выбор оптического клея требует более детального исследования в будущем

Выбор материала: сравнение WLS волокон

Мы сравнили волокна Saint-Gobain Crystals BCF91A, BCF92 и Kuraray Y-11. Все образцы были изготовлены с использованием СКТН МЕД. Исследование проводилось с тайлами третьего ряда.

3x3 SensL SiPM

Сравнение BCF91AS (фиолетовый), BCF92S (желтый) и Y-11 (зеленый)

	Emission	Emission	Decay	Att.
Fiber	colour	peak,	time,	Length
		nm	\mathbf{ns}	m
Kuraray	green	476	7.4 [4]	> 3.5
Y-11				
SG Crystals	green	494	12	> 3.5
BCF91AS				
SG Crystals	green	492	2.7	> 3.5
BCF92S				

Fit Param-s	Saint-Gobain BCF92	Saint-Gobain BCF91A	Kuraray Y-11
Mean, Channels	402.3	481.9	596.3
Width, Channels	24.7	35.2	43.5

Кигагау Y-11 собирает на ≈ 33% больше света, чем ВСF92, и на ≈ 19% больше, чем ВСF91А с использованием СКТН МЕД Е

Выбор материала: сравнение WLS волокон

Дополнительно: разные длины волокон и геометрия

центральных тайлов с СКТН и BCF92S

Study	Central tiles fiber			Line 1, central and line 3		
	lenght comparison			geometries comparison		
Tiles	CKTN	CKTN CKTN OK-72 I		Line 1	Central	Line 3
	$L\approx 5.5~cm$	$L \approx 36.5 \text{ cm}$	$L \approx 22.0 \text{ cm}$			
Mean,	497.2	424.2	344.1	377.1	443.7	405.2
Channels						
Width,	44.3	34.7	24.2	26.7	36.4	31.6
Channels						

Экспериментально наблюдаем ослабление амплитуды сигнала с увеличением длины оптоволокна. Амплитудные спектры тайлов разной геометрии имеют разное положение пика. Необходимо провести исследование зависимости положения пика от искривления волокна внутри тайла

Дополнительно: разные длины волокон и геометрия

WLS Fiber	Difference in peak position between d1 and d4, %
SG BCF91A	6.0
SG BCF92	4.7
Kuraray Y-11	8.5

Исследование потерь на изгиб не соответствует экспериментальным данным из технического паспорта Kuraray в случае волокна Y-11, однако подтверждает существование зависимости и оценивает приблизительные потери при одном обороте волокна

Заключение

- В данной работе приводятся результаты испытания прототипа сцинтилляторного детектора и выбор материалов с помощью системы считывания CAEN FERS-5200
- Проведено сравнение тайлов с матовым покрытием и покрытием Tyvek. **Матированные тайлы** оказались более эффективны по обоим параметрам: количеству отраженного света и практичности в терминах массового производства
- Проведено сравнение оптических клеёв СКТН МЕД и ОК-72. Исследование влияния разных составов А/В на светосбор показало, что разница в соотношении А к В слабо влияет на светосбор, и доказало, что соотношение 76.24/23.66, указанное в техническом паспорте, является наиболее эффективным.
- Проведено сравнение WLS волокон SG BCF91A, BCF92 и Kuraray Y-11. Оптоволокно Y-11 является более подходящими для наших целей во всех исследованиях, в том числе при использовании различных оптических клеев.
- Было проведено исследование потерь на изгибе волокна. Исследование не соответствует экспериментальным данным из технического паспорта Kuraray в случае волокна Y-11. Также экспериментально наблюдалось ослабление амплитуды сигнала в исследованиях тайлов с различной длиной волокна.
- XXV Baldin ISHEPP 18-23 Sep 2023: «Material selection of the SPD Beam-Beam Counter scintillation detector prototype», Author, paper is accepted for the contribution
- AYSS-2023 30 Oct 3 Nov 2023: «Tile detector congurations testing for the SPD Beam-Beam Counter prototype», Author, paper is accepted for the contribution
- AYSS-2023 30 Oct 3 Nov 2023: «The SPD Beam-Beam Counter scintillation detector prototype tests with FERS-5200 Front-End readout system», Co-author, paper is accepted for the contribution
- XIX Workshop on HESP, DSPIN-23: «Development of the SPD Beam-Beam Counter scintillation detector prototype with FERS 5200 frontend readout system», Co-author

Спасибо за внимание!

BACK UP

SensL 1x1 SiPM with factory pin adapter and mounted in connector

TOP VIEW

SIDE VIEW

Ø1.8

SiPM Calibration

Using beta-source

Led Driver CAEN SP5601

Experiment setup

The Spin Physics Detector collaboration proposes to install a universal detector in the second interaction point of the NICA collider under construction (JINR, Dubna) to study the spin structure of the proton and deuteron and the other spin-related phenomena with polarized proton and deuteron beams at a collision energy up to 27 GeV and a luminosity up to 10^{32} cm⁻² s⁻¹

The SPD BBC is designed to have 16 sectors with 25 tiles in each sector in one wheel. Each tile is a separate signal source that should be read using silicon photomultiplier (SiPM), connected to WLS fiber. The amount of readout channels leads us to use CAEN FERS-5200 front-end readout system, that was designed for large detector arrays.

The main goals of the Beam-Beam Counters are:

- the local polarimetry at SPD basing on the measurements of the azimuthal asymmetries of polarized proton beams;
- the monitoring of beam collisions;

Material selection: CKTN E VS OK-72

Comparison of OK-72 (green) and CKTN (purple) for a) line 1 (76.24% of A and 23.66% of B) and b) line 3 (70% of A and 30% of B) tiles

Brand	Viscosity, cPs	Operating T Range, °C	Spectral Characteristics		Refractive index	For the study we used matted tiles and different compositions of A to B components for OK-72 cement.
CKTN MED E	$15 \cdot 10^{3}$		92-96% at 500 nm		1.606	As for CKTN, in both cases and for all comparisons we used the same 100 of A to 3.2 of B ratio, as it is written
ОК-72		-60 to +60	99% at 40	0-2700 nm	1.587	in data sheet.
Fit Param-s	Row 1 CKTN	Row 1 OK-72	Row 3 CKTN	Row 3 OK-72	Since OI extended	K-72 is easier to apply due to its low viscosity and I curing time (compared to CKTN mark E), but
Mean, Channels	372 0	254 4	106.9	/12.3	in view o	of the fact that such a slight difference in ratio of
· ·	512.9	234.4	400.9	412.3	41	