

Национальный исследовательский ядерный университет «МИФИ»

Кафедра физики элементарных частиц №40

Научная исследовательская работа студента на тему:

Свойства позиционно-чувствительного детектора на основе монолитного кристалла GAGG и матрицы SiPM

Научный руководитель: Дубинин Ф. А. Студентка 2 курса: Журкина А. О. ИЯФиТ

Введение

Позитронно-эмиссионная томография эффективный и современный метод диагностики онкологических заболеваний.

В современных ПЭТ-сканерах для регистрации аннигиляционных гаммаквантов от радиофармпрепарата, вводимого пациенту, используются тысячи сцинтилляционных элементов, от размера которых зависит пространственное разрешение и, в конечном итоге, четкость изображения изучаемого органа.

Альтернативой большому количеству элементов ПЭТ является использование кристаллических пластин (monolithic detectors) с матрицами кремниевых фотоумножителей в качестве фотодетекторов.

Рисунок 1 – Принципиальная схема ПЭТ

Цель

Поставленные задачи

- Изучение характеристик позиционно-чувствительного детектора на основе сцинтилляционного кристалла GAGG 12x12x12 мм в сочетании с матрицей SiPM 4x4 SensL ARRAYJ-30035-16P
- Оценка однородности коэффициентов усиления каналов матрицы
- Оценка энергетического разрешения
- Восстановление координаты ХҮ – взаимодействия и оценка координатного разрешения
- Оценка временного разрешения детектора на основе двух матриц SiPM и сцинтилляционных кристаллов GAGG

Экспериментальная установка

Рисунок 2 – Матрица SiPM SensL ARRAYJ-30035-16Р

Рисунок 3 – Схема подключения матрицы SiPM SensL ARRAYJ–30035–16Р

Характеристики монолитного сцинтилляционного кристалла GAGG :

Parameter	GAGG
Size, mm	12x12x12
Number of polished sides	1
Z_{eff}	51
Density, g/cm^3	6.6
Luminescence decay time, ns	30-100
Energy resolution (662 keV), $\%$	5
Peak wavelength, nm	520
Hygroscopicity	-
Self-radioactivity	-

Экспериментальная установка

- Petiroc 2A 32-канальный ASIC(application-specific integrated circuit, "интегральная схема для конкретного применения"), предназначенный для считывания данных с кремниевых фотоумножителей (SiPM).
- Petiroc 2A сочетает в себе возможность точных измерений заряда и времени. Заряд и время оцифровываются внутри прибора с помощью 10-битных АЦП и ВЦП.

Принципиальная схема установки для калибровки коэффициента усиления

Оценка однородности коэффициентов усиления каналов матрицы

усиления:

~ 3 %

Рисунок 4 – График зависимости коэффициентов усиления от номеров каналов матриц

Оценка энергетического разрешения

Рисунок 5 – Суммарный зарядовый спектр Cs-137

Относительное разрешение (662 кэВ): δ ~ 9%

Рисунок 6 – Суммарный зарядовый спектр Ті-44

Относительное разрешение (511 кэВ): δ ~ 11%

Оценка координатного разрешения

где x_i - координата центра *i*-ой ячейки матрицы в милиметрах,

 ω_i - вес *i*-ой ячейки в каналах

Принципиальная схема установки для измерения временного разрешения

+ 27,5 V

Оценка временного разрешения

- Отбор событий по числу сработавших ячеек
- Исключение событий с ложными срабатываниями
- Временной спектр получен на основе разности усредненных времен срабатывания ячеек различных матриц
- Цена деления канала 36 пс

Оценка временного разрешения детектора на основе двух матриц SiPM и двух сцинтилляционных кристаллов GAGG(Ce): FWHM ~ 8 нс

Заключение

- Получены одноэлектронные спектры и проведена оценка однородности коэффициента усиления каналов матрицы. Дисперсия составила ~ 3%
- Проведена оценка относительного энергетического разрешения на примере Cs-137 (662 кэВ) и Ti-44 (511 кэВ). Оно составило δ ~ 9% и δ ~ 11% соответственно
- Восстановлена координата ХҮ взаимодействия и проведена оценка координатного разрешения, оно составило ~ 0,6 мм
- Проведена оценка временного разрешения детектора на основе двух матриц SiPM и сцинтилляционных кристаллов GAGG. Оно составило ~ 8 нс

Спасибо за внимание!

Backup

Parameter	GAGG	LYSO	$LaBr_3(Ce)$
Z_{eff}	51	63	45
Density, g/cm^3	6.6	7.1	5.1
Luminescence decay time, ns	30-100	41	16
Energy resolution (662 keV), $\%$	5	7	3
Peak wavelength, nm	520	420	365
Hygroscopicity	-	-	+
Self-radioactivity	-	+	+

Сравнение основных характеристик различных сцинтилляционных кристаллов

Backup

- Отбор событий по числу сработавших ячеек
- Исключение событий с ложными срабатываниями
- Временной спектр получен на основе разности времен первых сработавших ячеек различных матриц
- Цена деления канала 36 пс

Гаусс + Коши?