Получение интегрального сечения для процесса ассоциированного рождения Z бозона с фотоном в pp столкновениях с энергией \sqrt{s} = 13 ТэВ в эксперименте ATLAS

Казакова К.К.

Научные руководители: к.ф.-м.н., доцент Солдатов Е.Ю. инженер Пятиизбянцева Д.Н.

Защита НИРС 29.01.2024

Мотивация и задачи

Мотивация:

- Измерение дифференциальных сечений в рамках Стандартной модели (СМ) с точностью NNLO КХД и NLO ЭС поправок. Это даст возможность наблюдать отклонения от СМ в области высоких энергий;
- Поиск аномальных тройных вершин. Одним из чувствительных процессов для поиска «новой физики» является Z(vv)ү.

Цель:

Получение интегрального сечения для процесса Z(νν)γ.

Задачи:

- Оценка фонов W(lv)γ, ttγ и γ+jets;
- Оценка силы сигнала Z(vv)ү;
- Построение стабильной статистической модели;
- Осуществление процедуры фитирования с учетом экспериментальных и теоретических систематических погрешностей.

Фоны и определение фазового пространства

На основе максимизации значимости сигнала получено определение сигнальной области (СО):

<u>Предотборы</u>

Переменная	Ограничение
$E_{ m T}^{ m miss}$	> 120 ГэВ
$E_{ m T}^{\gamma}$	>150 ГэВ
Число жёстких	$N_{\gamma}=1$
изолированных фотонов	1
Число лептонов	$N_e = 0, N_\mu = 0,$
писло лептонов	$N_{ au}=0$

Отборы

Переменная	Ограничение
$E_{ m T}^{ m miss}$	$ m Se T \ OE1 < 130 \ TeV$
Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	> 11
$ \Delta\phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	> 0.6
$\Delta\phi(ec{p}_{ m T}^{ m miss},j_1) $	> 0.3

Область с такими предотборами и отборами образует сигнальную область (CO)

• Фотон идентифицируется как «жёсткий», если он удовлетворяет всем критериям формы ЭМ ливня.

Критерии изолированности:

Изоляционная рабочая точка	Калориметрическая изоляция	Трековая изоляция
FixedCutLoose	$E_{\mathrm{T}}^{\mathrm{cone20}} - 0.065{\cdot}p_{\mathrm{T}}^{\gamma} < 0$ ГэВ	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma} < 0.05$

- Вклад фоновых процессов для Z(vv)ү:
 - ³⁵% γ+jets фит данными в контрольной области (КО) на основе МЕТ значимости (форма из МК);
 - 15% W(lv)γ и ttγ фит данными в KO на основе числа лептонов (форма из MK);
 - 11% е $\to \gamma$ оценка вклада методом на основе данных;
 - * jet \rightarrow γ оценка ABCD методом (форма из метода слайсов);
 - 0.9% Z(ll)γ на основе MK.

Метод максимального правдоподобия

- КО Wy определяется аналогично CO, за исключением отбора на N лептонов > 0;
- КО үј определяется аналогично СО, за исключением отбора на значимость MET < 11.

Для реализации процедуры фитирования вводятся три свободных параметра: $\mu_{Z\gamma}$, $\mu_{W\gamma}$ и $\mu_{\gamma i}$ (параметры интереса).

$$\mu_{Z\gamma} = \mu = \frac{\nu_{\mathrm{meas.}}^s}{\nu_{\mathrm{SM}}^s} = \frac{\sigma_{\mathrm{fid, meas.}}^s}{\sigma_{\mathrm{fid, SM}}^s}$$

 Для учета систематических погрешностей и ограничений на нормировку фоновых процессов в статистическую модель включается набор подстроечных параметров θ (ПП). Тогда функция правдоподобия:

$$\mathcal{L}(\mu, \theta) = \prod_{r}^{\text{regions}} \left[\prod_{i}^{\text{bins} \in r} \text{Pois}(N_i^{\text{data}} | \mu \nu_i^s \eta^s(\theta) + \nu_i^b \eta^b(\theta)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i)$$

 Измерение параметров интереса μ и подстроечных параметров θ осуществляется путем максимизации функции правдоподобия.

Процедура фитирования

- Для получения результатов применяется трехэтапная процедура фитирования:
 - 1. Фитирование в Wү и үj KO для первичной оценки нормировочных коэффициентов для фонов (background only fit);
 - 2. Фитирование в Wy и yj KO и в CO с использованием данных Азимова. Это позволит получить ожидаемую значимость и погрешность для ПИ.
 - 3. Фитирование в Wy и yj KO и CO с использованием наблюдаемых данных.

	CO	$W\gamma$ KO	γ j KO
$\mu_{Z\gamma}$	\checkmark		
$\mu_{W\gamma}$	\checkmark	\checkmark	\checkmark
$\mu_{\gamma j}$	\checkmark	\checkmark	\checkmark

Систематические погрешности:

- Погрешности, связанные с триггером и светимостью: 0.83% и 1.5% соответственно;
- Экспериментальные погрешности на энергию и импульс объектов, на эффективность реконструкции и идентификации;
- Теоретические погрешности, связанные с вариацией структурных функций и константы α_s ;
- Теоретические погрешности, связанные с вариацией масштабов перенормировки μ_R и факторизации μ_F;
- Теоретические погрешности, связанные с моделированием партонных ливней и сопутствующих событий.

Фитирование в КО и на данных Азимова

Фитирование в КО:

• Процедура фитирования осуществляется по переменной поперечной энергии фотона $E_{\mathbf{T}}^{\gamma}$.

0 0.2 0.4 0.6 0.8

Фитирование на данных Азимова:

- μ_{Z_V} = 1.00 \pm 0.07 (стат. \oplus сист.), μ_{W_V} = 1.00 \pm 0.18 (стат. \oplus сист.), и μ_{V_I} = 0.70 \pm 0.06 (стат. \oplus сист.).
- Ожидаемая значимость сигнала: 69 о.

Фитирование в КО и СО

Результаты фитирование в КО и СО:

- μ_{Z_V} = 0.90 \pm 0.13 (стат. \oplus сист.), μ_{W_V} = 0.97 \pm 0.06 (стат. \oplus сист.) и μ_{V_I} = 0.84 \pm 0.05 (стат. \oplus сист.).
- Наблюдаемая значимость сигнала: 64 о, интегральное сечение о = 87 ± 13 (стат. ⊕ сист.) фбн.

Больше информации в back-up.

Заключение

Цель работы заключалась в получении интегрального сечения процесса ассоциированного рождения Z(vv)γ. В соответствии с поставленными задачами:

- Построена статистическая модель.
- Добавлены экспериментальные и теоретические погрешности, а также погрешности, связанные с моделированием.
- Осуществлена процедура фитирования и получены нормировочные коэффициенты для фоновых процессов W(lv)γ, ttγ и γ+jets.
- Оценена сила сигнала $Z(vv)\gamma$, значение которой составило $\mu_{Z\gamma}$ = 0.90 ± 0.13 (стат. \oplus сист.).
- Получено значение интегрального сечения, которое составило σ = 87 ± 13 (стат. \oplus сист.) фбн.

В дальнейшем планируется стабилизировать статистическую модель, включающую все систематические погрешности. Также планируется учесть погрешность от пайлапа.

Спасибо за внимание!

BACK-UP

Метод максимального правдоподобия

$$\mathcal{L}(\mu, \theta) = \prod_{r}^{\text{regions}} \left[\prod_{i}^{\text{bins} \in r} \text{Pois}(N_i^{\text{data}} | \mu \nu_i^s \eta^s(\theta_i) + \nu_i^b \eta^b(\theta_i)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i),$$

- $N_i^{
 m data}$ есть количество наблюдаемых событий в данных в бине;
- u_i есть ожидаемое количество сигнальных или фоновых событий в бине
- $\eta(\theta_i)$ есть функция отклика, отражающая влияние систематических неопределенностей и ограничений нормировки на количество событий в бине с помощью набора ПП θ ;
- $\mathcal{L}(\theta_i)$ есть функция правдоподобия «вспомогательного измерения», отражающая природу систематических неопределенностей. С точки зрения статистической модели это «ограничивающий» множитель, уменьшающий значение правдоподобия и не позволяющий принимать ей любые значения.

Функция $q(\mu,\hat{\mu},\hat{\theta})$ используется для вычисления значимости измерения и неопределенностей оценок $\hat{\mu}$ и $\hat{\theta}$ и определяется как:

$$q(\mu, \hat{\mu}, \hat{\theta}) = -2 \ln \lambda(\mu, \hat{\mu}, \hat{\theta}) = -2 \ln \frac{\mathcal{L}(\mu, \hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$$

 $\lambda(\mu,\hat{\mu},\hat{ heta})$ есть профиль правдоподобия (profile likelihood ratio)

Теоретические погрешности

Погрешности, связанные с вариацией структурных функций и константы сильного взаимодействия:

- В соответствии с рекомендациями PDF4LHC учитываются внутренние PDF и α_s компоненты для NNPDF3.0 NLO PDF набора. Для вычисления погрешности используется ансамбль из NNPDF3.0 PDF наборов (100 параметров в сумме). Для получения погрешности числа событий применяется следующий порядок действий:
 - 1. Получение числа событий в бине Xi для i = 100 вариаций NNPDF набора.
 - 2. Замена отрицательных значений на 0 (если Xi < 0, Xi = 0).
 - 3. Расстановка всех значений в порядке возрастания:

$$X^1 \le X^2 \le \dots \le X^{99} \le X^{100}$$
.

4. Выбор значений, соответствующих границам 68% доверительного интервала, и получение погрешности: $\delta^{\rm PDF} X = \frac{X^{84} - X^{16}}{2}.$

Для получения погрешности на константу сильного взаимодействия α_s использовались верхняя и нижняя вариации: α_s = 0.1180 ± 0.0015. Погрешность вычисляется по формуле:

$$\delta^{\alpha_s} X = \frac{X(\alpha_s = 0.1195) - X(\alpha_s = 0.1165)}{2}.$$

• Также учитывается погрешность от альтернативных наборах СТ14 и ММНТ2014

Теоретические погрешности

Погрешности, связанные с вариацией масштабов перенормировки и факторизации:

- Погрешности, связанные с вариацией масштабов перенормировки и фрагментации, оцениваются путем варьирования шкалы перенормировки μR и шкалы факторизации μF. Рассматриваются шесть комбинаций:
 - $\mu_F = \mu_R = 0.5\mu_0$;
 - $\mu_F = \mu_0, \, \mu_R = 0.5\mu_0;$
 - $\mu_R = \mu_0, \, \mu_F = 0.5\mu_0;$
 - $\mu_F = \mu_R = 2\mu_0$;
 - $\mu_F = 2\mu_0, \ \mu_R = \mu_0;$
 - $\mu_F = \mu_0, \, \mu_R = 2\mu_0.$

Максимальное отклонение от номинального числа событий взято в качестве систематической погрешности.

$$\delta^{\text{model.}}X = |X^{\text{altern.}} - X^{\text{nominal}}|.$$

Фитирование в КО

До фита:

	$W\gamma$ KO	γj KO	CO
$Z(\nu\bar{\nu})\gamma \text{ QCD}$	540 ± 150	1600 ± 700	10700 ± 1600
$Z(\nu\bar{\nu})\gamma$ EWK	12.4 ± 1.9	85 ± 15	170 ± 30
$W\gamma$ QCD	4660 ± 190	1430 ± 90	3310 ± 140
$W\gamma$ EWK	260 ± 20	101 ± 9	109 ± 9
$e \rightarrow \gamma$	310 ± 19	680 ± 40	2610 ± 160
$j \to E_T^{miss}$	950 ± 120	17000 ± 4000	8100 ± 1100
$j ightarrow \gamma^-$	120 ± 20	850 ± 150	1800 ± 300
$Z(\ellar\ell)\gamma$	240 ± 20	73 ± 11	211 ± 16
$t ar{t} \gamma$	700 ± 300	330 ± 150	180 ± 80
Total	7800 ± 500	22000 ± 4000	27000 ± 2000
Data	7186	17277	23375

После фита:

	$W\gamma$ KO	$\gamma j \text{ KO}$	CO
$Z(\nu\bar{\nu})\gamma \text{ QCD}$	420 ± 90	1000 ± 400	9200 ± 1000
$Z(\nu\bar{\nu})\gamma$ EWK	12.4 ± 1.9	86 ± 14	160 ± 30
$W\gamma$ QCD	4700 ± 200	1500 ± 100	3280 ± 180
$W\gamma$ EWK	250 ± 20	100 ± 10	110 ± 10
$e \rightarrow \gamma$	310 ± 20	680 ± 40	2620 ± 160
$j \to E_T^{miss}$	660 ± 80	13000 ± 400	5400 ± 700
$j \to \gamma$	110 ± 20	830 ± 150	1700 ± 300
$Z(\ell ar{\ell})\gamma$	240 ± 20	73 ± 11	209 ± 15
$t \overline{t} \gamma$	510 ± 170	250 ± 80	140 ± 40
Total	7180 ± 90	17290 ± 160	22900 ± 1100
Data	7186	17277	23375

Фитирование в КО

Фитирование в КО и СО

До фита:

	$W\gamma$ KO	γj KO	CO
$Z(\nu\bar{\nu})\gamma \text{ QCD}$	540 ± 150	1600 ± 700	10700 ± 1600
$Z(\nu\bar{\nu})\gamma$ EWK	12.4 ± 1.9	85 ± 15	170 ± 30
$W\gamma$ QCD	4660 ± 190	1430 ± 90	3310 ± 140
$W\gamma$ EWK	260 ± 20	101 ± 9	109 ± 9
$e \rightarrow \gamma$	310 ± 19	680 ± 40	2610 ± 160
$j o E_T^{miss}$	950 ± 120	17000 ± 4000	8100 ± 1100
$j o \gamma$	120 ± 20	850 ± 150	1800 ± 300
$Z(\ell ar{\ell}) \gamma$	240 ± 20	73 ± 11	211 ± 16
$t ar{t} \gamma$	700 ± 300	330 ± 150	180 ± 80
Total	7800 ± 500	22000 ± 4000	27000 ± 2000
Data	7186	17277	23375

После фита:

	$W\gamma$ KO	γj KO	CO
$Z(\nu\bar{\nu})\gamma \text{ QCD}$	360 ± 80	800 ± 300	7800 ± 400
$Z(\nu\bar{\nu})\gamma$ EWK	12.1 ± 1.8	82 ± 14	150 ± 30
$W\gamma$ QCD	4500 ± 200	1300 ± 80	3200 ± 180
$W\gamma$ EWK	250 ± 20	100 ± 10	100 ± 10
$e \rightarrow \gamma$	310 ± 20	670 ± 40	2610 ± 160
$j \to E_T^{miss}$	840 ± 60	13200 ± 300	7400 ± 300
$j \to \gamma$	110 ± 20	830 ± 140	1700 ± 300
$Z(\ellar\ell)\gamma$	240 ± 20	70 ± 10	212 ± 15
$t ar t \gamma$	570 ± 180	270 ± 90	150 ± 50
Total	7180 ± 90	17300 ± 140	23350 ± 150
Data	7186	17277	23375

Фоновые процессы

- конечные состояния $\tau\nu\gamma$ и $l\nu\gamma$ от КХД и электрослабого рождения $W\gamma$, где τ распадается на адроны, или где электрон или мюон от распада τ или W не регистрируются детектором;
- события γ + струя, в которых большой $E_{\rm T}^{\rm miss}$ возникает из комбинации реального $E_{\rm T}^{\rm miss}$ от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события $W(e\nu)$, t-кварк и $t\bar{t}$, где электрон в конечном состоянии неверно идентифицируется как фотон $(e \to \gamma)$;
- события от рождения $t\bar{t}\gamma$, когда один или оба W-бозона от распада t-кварка распадаются на лептоны. Эти лептоны либо распадаются на τ -лептоны, которые либо распадаются на адроны, либо не реконструируются;
- события $Z(ll) + \gamma$ (преимущественно τ -лептоны), где τ распадается на адроны или когда электрон или мюон от распада τ или Z не регистрируется.

Потерянный поперечный импульс $ec{p}_{ ext{T}}^{ ext{miss}}$

Определяется как сумма поперечных импульсов частиц в конечном состоянии со знаком минус $ec{p}_{ ext{T}}^{\, ext{miss}} = -\sum ec{p}_{ ext{T}}^{\,f}$

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss, e}} + E_{x(y)}^{\text{miss, \gamma}} + E_{x(y)}^{\text{miss, jets}} + E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, \mu}}$$

Софттерм реконструируется как $p_{x(y)}^{\mathrm{miss,\ SoftTerm}}$ потерянный поперечный импульс не ассоциированный ни с одной из жестких частиц.

 $E_{
m T}^{
m cone20}$ задает энерговыделение в калориметре внутри конуса раствором $\Delta R = 0.2\,$ внутри трека кандидата в фотон

Значимость
$$E_{\mathrm{T}}^{\mathrm{miss}}$$
 = $E_{\mathrm{T}}^{\mathrm{miss}^2}/(\sigma_L^2(1-\rho_{LT}^2))$

где σ_L – дисперсия измерения потерянного поперечного импульса в продольном направлении

 ρ_{LT} - корреляционный фактор измерения

 продольной и поперечной компонент

 потерянного поперечного импульса

Фоновые процессы

- конечные состояния $\tau\nu\gamma$ и $l\nu\gamma$ от КХД и электрослабого рождения $W\gamma$, где τ распадается на адроны, или где электрон или мюон от распада τ или W не регистрируются детектором;
- события γ + струя, в которых большой $E_{\rm T}^{\rm miss}$ возникает из комбинации реального $E_{\rm T}^{\rm miss}$ от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события $W(e\nu)$, t-кварк и $t\bar{t}$, где электрон в конечном состоянии неверно идентифицируется как фотон $(e \to \gamma)$;
- события от рождения $t\bar{t}\gamma$, когда один или оба W-бозона от распада t-кварка распадаются на лептоны. Эти лептоны либо распадаются на τ -лептоны, которые либо распадаются на адроны, либо не реконструируются;
- события $Z(ll) + \gamma$ (преимущественно τ -лептоны), где τ распадается на адроны или когда электрон или мюон от распада τ или Z не регистрируется.

Потерянный поперечный импульс $ec{p}_{ ext{T}}^{ ext{miss}}$

Определяется как сумма поперечных импульсов частиц в конечном состоянии со знаком минус $ec{p}_{ ext{T}}^{\, ext{miss}} = -\sum ec{p}_{ ext{T}}^{\,f}$

$$E_{x(y)}^{\text{miss}} = E_{x(y)}^{\text{miss, e}} + E_{x(y)}^{\text{miss, \gamma}} + E_{x(y)}^{\text{miss, jets}} + E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, poth}}$$

Софттерм реконструируется как $p_{x(y)}^{\mathrm{miss,\ SoftTerm}}$ потерянный поперечный импульс не ассоциированный ни с одной из жестких частиц.

 $E_{
m T}^{
m cone20}$ задает энерговыделение в калориметре внутри конуса раствором $\Delta R = 0.2\,$ внутри трека кандидата в фотон

Значимость
$$E_{\mathrm{T}}^{\mathrm{miss}}$$
 = $E_{\mathrm{T}}^{\mathrm{miss}^2}/(\sigma_L^2(1-\rho_{LT}^2))$

где σ_L – дисперсия измерения потерянного поперечного импульса в продольном направлении

 ho_{LT} – корреляционный фактор измерения продольной и поперечной компонент потерянного поперечного импульса

ABCD метод

 $loose'2: w_{s3}, F_{side}$

 $loose'3: w_{s3}, F_{side}, \Delta E$

 $loose'4: w_{s3}, F_{side}, \Delta E, E_{ratio}$

 $loose'5: w_{s3}, F_{side}, \Delta E, E_{ratio}, w_{tot}$

- ws3 ширина электромагнитного ливня с использованием трёх стриповых (первых слоёв ЭМ калориметра) слоёв вокруг стрипового слоя с максимальной энергией
- Fside доля энергии вне трёх стриповых слоёв, но внутри семи слоёв
- Δ E разница энергий стриповых слоёв, где в одном слое выделилась вторая по величине энергия, и слоя, где выделилась наименьшая энергия
- Eratio отношение разности энергий, ассоциированных с наиболее высоким и вторым по величине выделением энергии к сумме этих энергий
- wtot полная поперечная ширина ливня

A (CO):
$$E_T^{cone20} - 0.065 p_T^{\gamma} < 0$$
, tight

B (KO): isogap
$$<$$
 E_T^{cone20} - 0.065 p_T $^{\gamma}$, tight

C (KO):
$$E_T^{cone20} - 0.065 p_T^{\gamma} < 0$$
, non-tight

D (KO): isogap
$$< E_T^{cone20} - 0.065 p_T^{\gamma}$$
, non-tight

$$N_A^{jet
ightarrow\gamma}=$$
 1770 ± 160 ± 300

Non-Isolated

Isolated

Идентификация фотона

Category	Description	Name	loose	tight
Acceptance	$ \eta < 2.37$, with $1.37 \le \eta < 1.52$ excluded	-	✓	✓
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ or $ \eta > 1.52$)	R_{had_1}	√	✓
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	$R_{\rm had}$	√	✓
EM middle layer	Ratio of the energy in $3 \times 7 \eta \times \phi$ cells over the energy in 7×7 cells centered around the photon cluster position	R_{η}	✓	✓
	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the energy and η_i is the pseudorapidity of cell i and the sum is calculated within a window of 3×5 cells	w_{η_2}	✓	✓
	Ratio of the energy in $3 \times 3 \ \eta \times \phi$ cells over the energy of 3×7 cells centered around the photon cluster position	R_{ϕ}		✓
EM strip layer	Lateral shower width, $\sqrt{(\Sigma E_i (i - i_{\text{max}})^2)/(\Sigma E_i)}$, where i runs over all strips in a window of $3 \times 2 \eta \times \phi$ strips, and i_{max} is the index of the highest-energy strip calculated from three strips around the strip with maximum energy deposit	<i>W</i> _S 3		✓

Description	Name	loose	tight
Total lateral shower width $\sqrt{(\Sigma E_i(i-i_{\max})^2)/(\Sigma E_i)}$, where i runs over all strips in a window of $20 \times 2 \ \eta \times \phi$ strips, and i_{\max} is the index of the highest-energy strip measured in the strip layer	W _s tot		✓
Energy outside the core of the three central strips but within seven strips divided by energy within the three central strips	$f_{ m side}$		✓
Difference between the energy associated with the second maximum in the strip layer and the energy reconstructed in the strip with the minimum value found between the first and second maxima	ΔE_s		✓
Ratio of the energy difference between the maximum energy deposit and the energy deposit in the secondary maximum in the cluster to the sum of these energies	$E_{\rm ratio}$		✓
Ratio of the energy in the first layer to the to the total energy of the EM cluster	f_1		✓

Метод слайсов для оценки формы $jet o \gamma$

Стратегия:

- 1. Разделение фазового пространства на 4 ортогональные области на основе критерия изолированности фотонов и кинематических отборов.
- 2. Отношение количества событий $jet \to \gamma$ в КО1 и КО3 равно отношению количества событий $jet \to \gamma$ в КО2 и СО.
- 3. Нормировка событий осуществляется в KO3, где распределение $jet \rightarrow \gamma$ событий взято из KO1 из данных.
- 4. Во избежание зависимости от изоляции, неизолированные КО1 и КО2 разделяются на более мелкие области, т.н. слайсы:

$$N_{\text{CR1(i)}}^{jet \to \gamma} = N_{\text{CR1(i)}}^{\text{data}} - N_{\text{CR1(i)}}^{\text{Z}(\nu\bar{\nu})\gamma} - N_{\text{CR1(i)}}^{\text{bkg}}$$
$$N_{\text{FR(i)}}^{jet \to \gamma} \approx T_{(i)} \cdot N_{\text{CR1(i)}}^{jet \to \gamma}$$

$$T=rac{N_{CR1}}{N_{CR2}}=rac{N_{CR2}}{N_{SR}}$$
 Кинематические отборы

5. В итоге, оцененное количество событий $jet o \gamma$ экстраполируется в сигнальную область:

$$N_{\mathrm{SR(i)}}^{jet \to \gamma} = T_{(i)} \cdot (N_{\mathrm{CR2(i)}}^{\mathrm{data}} - N_{\mathrm{CR2(i)}}^{\mathrm{Z}(\nu\bar{\nu})\gamma} - N_{\mathrm{CR2(i)}}^{\mathrm{bkg}})$$