Получение интегрального сечения для процесса ассоциированного рождения Z бозона с фотоном в *pp* столкновениях с энергией √s = 13 ТэВ в эксперименте ATLAS

Казакова К.К.

Научные руководители: к.ф.-м.н., доцент Солдатов Е.Ю. инженер Пятиизбянцева Д.Н.

Защита НИРС 29.01.2024

Мотивация и задачи

Мотивация:

- Измерение дифференциальных сечений в рамках Стандартной модели (СМ) с точностью NNLO КХД и NLO ЭС поправок. Это даст возможность наблюдать отклонения от СМ в области высоких энергий;
- Поиск аномальных тройных вершин. Одним из чувствительных процессов для поиска «новой физики» является Z(vv)ү.

<u>Цель:</u>

Получение интегрального сечения для процесса Z(vv)ү.

Задачи:

- Оценка фонов W(lv)γ, ttγ и γ+jets;
- Оценка силы сигнала Z(vv)ү;
- Построение стабильной статистической модели;
- Осуществление процедуры фитирования с учетом экспериментальных и теоретических систематических погрешностей.

Фоны и определение фазового пространства

На основе максимизации значимости сигнала получено определение сигнальной области (СО):

• Фотон идентифицируется как «жёсткий», если он удовлетворяет всем критериям формы ЭМ ливня.

	Изоляционная рабочая точка	Калориметрическая изоляция	Трековая изоляция
тритерии изолированности.	FixedCutLoose	$E_{\mathrm{T}}^{\mathrm{cone20}}-0.065{\cdot}p_{\mathrm{T}}^{\gamma}<0$ Γэ B	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma} < 0.05$

- Вклад фоновых процессов для Z(vv) ү:
 - ^{35%} γ+jets фит данными в контрольной области (КО) на основе МЕТ значимости (форма из МК);
 - ^{15%} W(lv)ү и ttү фит данными в KO на основе числа лептонов (форма из MK);
 - 11% е → γ оценка вклада методом на основе данных;
 - ^{8%} jet → γ оценка ABCD методом (форма из метода слайсов);
 - 0.9% Z(ll)γ на основе MK.

Метод максимального правдоподобия

- КО Wγ определяется аналогично CO, за исключением отбора на N лептонов > 0;
- КО үј определяется аналогично СО, за исключением отбора на значимость MET < 11.

Для реализации процедуры фитирования вводятся три свободных параметра: µ_{Zγ}, µ_{Wγ} и µ_{γj} (параметры интереса).

$$\mu_{Z\gamma} = \mu = \frac{\nu_{\text{meas.}}^s}{\nu_{\text{SM}}^s} = \frac{\sigma_{\text{fid, meas.}}^s}{\sigma_{\text{fid, SM}}^s}$$

 Для учета систематических погрешностей и ограничений на нормировку фоновых процессов в статистическую модель включается набор подстроечных параметров 0 (ПП). Тогда функция правдоподобия:

$$\mathcal{L}(\mu, \theta) = \prod_{r} \left[\prod_{i}^{\text{bins} \in r} \operatorname{Pois}(N_i^{\text{data}} | \mu \nu_i^s \eta^s(\theta) + \nu_i^b \eta^b(\theta)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i)$$

 Измерение параметров интереса μ и подстроечных параметров θ осуществляется путем максимизации функции правдоподобия.

К. Казакова (НИЯУ МИФИ)

Защита НИРС 29.01.2024

Процедура фитирования

- Для получения результатов применяется трехэтапная процедура фитирования:
 - l. Фитирование в Wγ и γj KO для первичной оценки нормировочных коэффициентов для фонов (background only fit);
 - 2. Фитирование в Wy и yj KO и в CO с использованием данных Азимова. Это позволит получить ожидаемую значимость и погрешность для ПИ.
 - 3. Фитирование в Wү и үј KO и CO с использованием наблюдаемых данных.

Систематические погрешности:

- Погрешности, связанные с триггером и светимостью: 0.83% и 1.5% соответственно;
- Экспериментальные погрешности на энергию и импульс объектов, на эффективность реконструкции и идентификации;
- Теоретические погрешности, связанные с вариацией структурных функций и константы α_s;
- Теоретические погрешности, связанные с вариацией масштабов перенормировки μ_R и факторизации μ_F;
- Теоретические погрешности, связанные с моделированием партонных ливней и сопутствующих событий.

	CO	$W\gamma KO$	γ j KO
$\mu_{Z\gamma}$	\checkmark		
$\mu_{W\gamma}$	\checkmark	\checkmark	\checkmark
$\mu_{\gamma j}$	\checkmark	\checkmark	\checkmark

Фитирование в КО и на данных Азимова

Фитирование в КО:

Фитирование на данных Азимова:

- μ_{Zγ} = 1.00 ± 0.07 (стат. ⊕ сист.), μ_{Wγ} = 1.00 ± 0.18 (стат. ⊕ сист.), и μ_{γj} = 0.70 ± 0.06 (стат. ⊕ сист.).
- Ожидаемая значимость сигнала: 69 σ.

Защита НИРС 29.01.2024

Фитирование в КО и СО

Результаты фитирование в КО и СО:

- $\mu_{Z\gamma}$ = 0.90 ± 0.13 (стат. \oplus сист.), $\mu_{W\gamma}$ = 0.97 ± 0.06 (стат. \oplus сист.) и $\mu_{\gamma i}$ = 0.84 ± 0.05 (стат. \oplus сист.).
- Наблюдаемая значимость сигнала: 64 о, интегральное сечение о = 87 ± 13 (стат. ⊕ сист.) фбн.

Больше информации в back-up.

Защита НИРС 29.01.2024

Заключение

Цель работы заключалась в получении интегрального сечения процесса ассоциированного рождения Z(vv)γ. В соответствии с поставленными задачами:

- Построена статистическая модель.
- Добавлены экспериментальные и теоретические погрешности, а также погрешности, связанные с моделированием.
- Осуществлена процедура фитирования и получены нормировочные коэффициенты для фоновых процессов W(lv)γ, ttγ и γ+jets.
- Оценена сила сигнала Ζ(νν)γ, значение которой составило μ_{Zv} = 0.90 ± 0.13 (стат. ⊕ сист.).
- Получено значение интегрального сечения, которое составило σ = 87 ± 13 (стат. ⊕ сист.) фбн.

В дальнейшем планируется стабилизировать статистическую модель, включающую все систематические погрешности. Также планируется учесть погрешность от пайлапа.

Спасибо за внимание!

Метод максимального правдоподобия

$$\mathcal{L}(\mu, \theta) = \prod_{r} \left[\prod_{i}^{\text{bins} \in r} \operatorname{Pois}(N_i^{\text{data}} | \mu \nu_i^s \eta^s(\theta_i) + \nu_i^b \eta^b(\theta_i)) \right] \cdot \prod_{i}^{\text{nuis. par.}} \mathcal{L}(\theta_i),$$

- $N_i^{
 m data}$ есть количество наблюдаемых событий в данных в бине;
- \mathcal{V}_i есть ожидаемое количество сигнальных или фоновых событий в бине
- η(θ_i) есть функция отклика, отражающая влияние систематических неопределенностей и ограничений нормировки на количество событий в бине с помощью набора ПП θ;
- £(\(\theta\)_i) есть функция правдоподобия «вспомогательного измерения», отражающая природу систематических неопределенностей. С точки зрения статистической модели это «ограничивающий» множитель, уменьшающий значение правдоподобия и не позволяющий принимать ей любые значения.

Функция $q(\mu, \hat{\mu}, \hat{ heta})$ используется для вычисления значимости измерения и неопределенностей оценок $\hat{\mu}$ и $\hat{ heta}$ и определяется как:

$$q(\mu, \hat{\mu}, \hat{\theta}) = -2\ln\lambda(\mu, \hat{\mu}, \hat{\theta}) = -2\ln\frac{\mathcal{L}(\mu, \hat{\theta}(\mu))}{\mathcal{L}(\hat{\mu}, \hat{\theta})}$$

 $\lambda(\mu,\hat{\mu},\hat{ heta})$ есть профиль правдоподобия (profile likelihood ratio)

Теоретические погрешности

Погрешности, связанные с вариацией структурных функций и константы сильного взаимодействия:

- В соответствии с рекомендациями PDF4LHC учитываются внутренние PDF и α_s компоненты для NNPDF3.0 NLO PDF набора. Для вычисления погрешности используется ансамбль из NNPDF3.0 PDF наборов (100 параметров в сумме). Для получения погрешности числа событий применяется следующий порядок действий:
 - 1. Получение числа событий в бине Xi для i = 100 вариаций NNPDF набора.
 - 2. Замена отрицательных значений на 0 (если Xi < 0, Xi = 0).
 - 3. Расстановка всех значений в порядке возрастания:

$$X^1 \le X^2 \le \dots \le X^{99} \le X^{100}.$$

Выбор значений, соответствующих границам 68% доверительного интервала, и получение погрешности:

$$\delta^{\rm PDF} X = \frac{X^{84} - X^{16}}{2}.$$

Для получения погрешности на константу сильного взаимодействия α_s использовались верхняя и нижняя вариации: α_s = 0.1180 ± 0.0015. Погрешность вычисляется по формуле:

$$\delta^{\alpha_s} X = \frac{X(\alpha_s = 0.1195) - X(\alpha_s = 0.1165)}{2}.$$

• Также учитывается погрешность от альтернативных наборах СТ14 и ММНТ2014

Теоретические погрешности

Погрешности, связанные с вариацией масштабов перенормировки и факторизации:

- Погрешности, связанные с вариацией масштабов перенормировки и фрагментации, оцениваются путем варьирования шкалы перенормировки µR и шкалы факторизации µF. Рассматриваются шесть комбинаций:
 - $\mu_F = \mu_R = 0.5\mu_0;$
 - $\mu_F = \mu_0, \ \mu_R = 0.5\mu_0;$
 - $\mu_R = \mu_0, \ \mu_F = 0.5\mu_0;$
 - $\mu_F = \mu_R = 2\mu_0;$
 - $\mu_F = 2\mu_0, \ \mu_R = \mu_0;$
 - $\mu_F = \mu_0, \ \mu_R = 2\mu_0.$

Погрешности, связанные с моделированием партонных ливней:

$$\delta^{\text{model.}} X = |X^{\text{altern.}} - X^{\text{nominal}}|.$$

Максимальное отклонение от номинального числа событий взято в качестве систематической погрешности.

Фитирование в КО

	До ф	ита:				Посл	е фита:	
	$W\gamma$ KO	γj KO	СО			$W\gamma$ KO	γj KO	СО
$Z(\nu\bar{\nu})\gamma$ QCD	540 ± 150	1600 ± 700	10700 ± 1600		$Z(\nu\bar{\nu})\gamma$ QCD	420 ± 90	1000 ± 400	9200 ± 1000
$Z(\nu\bar{\nu})\gamma \text{ EWK}$	12.4 ± 1.9	85 ± 15	170 ± 30		$Z(\nu\bar{\nu})\gamma \ \mathrm{EWK}$	12.4 ± 1.9	86 ± 14	160 ± 30
$W\gamma~{ m QCD}$	4660 ± 190	1430 ± 90	3310 ± 140		$W\gamma~{ m QCD}$	4700 ± 200	1500 ± 100	3280 ± 180
$W\gamma \ { m EWK}$	260 ± 20	101 ± 9	109 ± 9		$W\gamma \ { m EWK}$	250 ± 20	100 ± 10	110 ± 10
$e \rightarrow \gamma$	310 ± 19	680 ± 40	2610 ± 160		$e \to \gamma$	310 ± 20	680 ± 40	2620 ± 160
$j \to E_T^{miss}$	950 ± 120	17000 ± 4000	8100 ± 1100		$j \to E_T^{miss}$	660 ± 80	13000 ± 400	5400 ± 700
$j \rightarrow \gamma$	120 ± 20	850 ± 150	1800 ± 300		$j \rightarrow \gamma$	110 ± 20	830 ± 150	1700 ± 300
$Z(\ellar\ell)\gamma$	240 ± 20	73 ± 11	211 ± 16		$Z(\ellar\ell)\gamma$	240 ± 20	73 ± 11	209 ± 15
$t \overline{t} \gamma$	700 ± 300	330 ± 150	180 ± 80		$t\bar{t}\gamma$	510 ± 170	250 ± 80	140 ± 40
Total	7800 ± 500	22000 ± 4000	27000 ± 2000		Total	7180 ± 90	17290 ± 160	22900 ± 1100
Data	7186	17277	23375		Data	7186	17277	23375
-0.04 -0.02 <u>A</u> 0.02 0.04 -111111111111111111111111111111111111							2 -1.5 -1 -0.5 0 0.5 1 1.5 2	
Pre-fit impact on μ: ☐ θ = θ+Δθ ☐ θ = θ-Δθ Post-fit impact on μ: ☐ θ = θ+Δθ ☐ θ = θ+Δθ — Nuis. Param. Pull	Z γ QCD Sherpa vs MG EG_SCALE_ALL $j \rightarrow \gamma$ syst Z γ QCD NNPDF unc. α_s JET_Flaver_composition Trigger efficiency $\mu(\gamma)$ Z γ QCD alternative PDF	μ(WY) e→γ syst e→γ syst e→γ syst by aCD scale UNCOR Wy aCD scale JET_JER_EffectiveNP_6 JET_JRE_EffectiveNP_6 JET_JVIEfficiency	$\label{eq:constraint} \begin{array}{l} \mbox{FG}_{n}\mbox{ESOLUTION_ALL} & \mbox{tr} \ \mu_{p}\ \mu_{n}\ =0.5 \\ \mbox{JET_JER_EffectiveNP_1} & \mbox{tr} \ \mu_{n}\ =0.5 \\ \mbox{JET_INPCOR_PLUS_UNCOR} & \mbox{JET_Pileup_RhoTopology} & \mbox{tr} \ \mu_{p}\ =0.5 \\ \mbox{JET_Pileup_RhoTopology} & \mbox{tr} \ \mu_{p}\ =0.5 \\ \mbox{tr} \ \mu_{p}\ =0.5 \ \m$	ZgEWK $\mu_{\mu} = 0.5$ ZgEWK $\mu_{\mu} = 0.5$, $\mu_{\mu} = 0.5$ WgQCD $\mu_{\mu} = 0.5$ JET_Pleup_OffsetNPV Z(vv)Y EWK Herwig ZgEWK $\mu_{\mu} = 2$ ZgEWK $\mu_{\mu} = 2$	JET_Pileup_OffsedMu JET_Pileup_OffsedMu JET_IER_Effectivenvel2 WgQCD $\mu_{R} = 0.5, \mu_{e} = 0.5$ JET_Pileup_PTferm MET_SetTrk_ResePerp WgQCD $\mu_{r} = 2$ MET_SetTrk_Scale JET_JER_EffectivenvP_5	ET_JER_EffectiveNP_7restTerm W ₇ QCD NNPDF unc. $-\alpha_s$ tty μ _F =0.5 tty μ _F =2 JET_Flavor_Response JET_JER_DataVsMC_MC16 tty NNPDF unc. $+\alpha_s$ Zy EWKNNPDF unc. $+\alpha_s$	WgEWK $\mu_R = 0.5, \mu_p = 0.5$ WgEWK $\mu_p = 0.5$ Wg SEWK $\mu_p = 2.5$ Wr 2 EWK scale WgEWK $\mu_p = 2$ MET_SoftTrk_ResoFara	

К. Казакова (НИЯУ МИФИ)

Фитирование в КО

Фитирование в КО и СО

До фита: После фита: $W\gamma$ KO $\gamma \overline{j} \text{ KO}$ CO $W\gamma$ KO γj KO CO 360 ± 80 800 ± 300 $Z(\nu\bar{\nu})\gamma$ QCD 7800 ± 400 $Z(\nu\bar{\nu})\gamma$ QCD 1600 ± 700 10700 ± 1600 540 ± 150 150 ± 30 170 ± 30 $Z(\nu\bar{\nu})\gamma$ EWK 12.1 ± 1.8 82 ± 14 $Z(\nu\bar{\nu})\gamma$ EWK 12.4 ± 1.9 85 ± 15 4500 ± 200 $W\gamma$ QCD 1300 ± 80 3200 ± 180 $W\gamma$ QCD 3310 ± 140 4660 ± 190 1430 ± 90 $W\gamma EWK$ 250 ± 20 100 ± 10 100 ± 10 $W\gamma EWK$ 260 ± 20 101 ± 9 109 ± 9 $e \rightarrow \gamma$ 310 ± 20 670 ± 40 2610 ± 160 310 ± 19 680 ± 40 2610 ± 160 $e \rightarrow \gamma$ $j \to E_T^{miss}$ $j \to E_T^{miss}$ 840 ± 60 13200 ± 300 7400 ± 300 950 ± 120 17000 ± 4000 8100 ± 1100 110 ± 20 830 ± 140 1700 ± 300 120 ± 20 850 ± 150 1800 ± 300 $j \rightarrow \gamma$ $j \rightarrow \gamma$ $Z(\ell\bar{\ell})\gamma$ $Z(\ell\bar{\ell})\gamma$ 240 ± 20 70 ± 10 212 ± 15 240 ± 20 73 ± 11 211 ± 16 $t\bar{t}\gamma$ $t\bar{t}\gamma$ 180 ± 80 570 ± 180 270 ± 90 150 ± 50 700 ± 300 330 ± 150 Total 7180 ± 90 17300 ± 140 23350 ± 150 Total 7800 ± 500 22000 ± 4000 27000 ± 2000 Data 718617277 23375 Data 7186 17277 23375 0.06 ATLAS Internal 0.04 0.02 ন্দ 06 -0.04 -0.02 Post-fit impact on μ : $\theta = \theta + \Delta \theta$ $\theta = \theta - \Delta \theta$ — Nuis. Param. Pull $Z\gamma$ QCD scale ZgQCD $\mu_R = 0.5$ Pre-fit impact on μ : $\theta = \theta + \Delta \theta = \theta - \Delta \theta$ ZgQCD μ_R = ZY QCD CT14 PD $\begin{array}{l} Z(vv)\gamma \; EVK \; \text{Herwi} \\ \text{ZgEWK} \; \mu_{R} = 0.5, \; \mu_{F} = 0, \\ \text{ZgEWK} \; \mu_{F} = 0, \end{array}$ EG SCALE A SoftTrk_ResoP ZgEWK µ_F MET_SoftTrk_ResoP W QCD NNPDF unc. + Zllg µ_R WgEWK $\mu_R = 0.5$, $\mu_F = 0.5$, μ_L ZgOCD IL. WgEWK μ_F ^z COR PLUS UN tty He. Z_Y EWK WY EWK Y NNPDF unc ZgQCD µ Z₁ QCD Sherpa INPCOR_PLUS Pileup Of Z_Y QCD NNPDF JET_JER_Effe ET_JER_Effe JET_JER_Eff

Фоновые процессы

- конечные состояния $\tau \nu \gamma$ и $l \nu \gamma$ от КХД и электрослабого рождения $W \gamma$, где τ распадается на адроны, или где электрон или мюон от распада τ или W не регистрируются детектором;
- события γ + струя, в которых большой E^{miss} возникает из комбинации реального E^{miss} от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события $W(e\nu)$, t-кварк и $t\bar{t}$, где электрон в конечном состоянии неверно идентифицируется как фотон $(e \to \gamma)$;
- события от рождения tt̄γ, когда один или оба W-бозона от распада t-кварка распадаются на лептоны. Эти лептоны либо распадаются на τ-лептоны, которые либо распадаются на адроны, либо не реконструируются;
- события $Z(ll) + \gamma$ (преимущественно τ -лептоны), где τ распадается на адроны или когда электрон или мюон от распада τ или Z не регистрируется.

Потерянный поперечный импульс $ec{p}_{ ext{T}}^{ ext{miss}}$

Определяется как сумма поперечных импульсов частиц в конечном состоянии со знаком минус $ec{p}_{
m T}^{\,
m miss}\,=\,-\sumec{p}_{
m T}^{f}$

$$\begin{split} E_{x(y)}^{\text{miss}} &= E_{x(y)}^{\text{miss, e}} + E_{x(y)}^{\text{miss, \gamma}} + E_{x(y)}^{\text{miss, jets}} + \\ &+ E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, \mu}} \end{split}$$

Софттерм реконструируется как $p_{x(y)}^{\mathrm{miss,\ SoftTerm}}$ потерянный поперечный импульс не ассоциированный ни с одной из жестких частиц.

 $E_{
m T}^{
m cone20}$ задает энерговыделение в калориметре внутри конуса раствором $\Delta R=0.2\,$ внутри трека кандидата в фотон

Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$ = $E_{\mathrm{T}}^{\mathrm{miss}^2}/(\sigma_L^2(1-\rho_{LT}^2))$

где σ_L – дисперсия измерения потерянного поперечного импульса в продольном направлении

PLT – корреляционный фактор измерения
продольной и поперечной компонент
потерянного поперечного импульса

Фоновые процессы

- конечные состояния $\tau \nu \gamma$ и $l \nu \gamma$ от КХД и электрослабого рождения $W \gamma$, где τ распадается на адроны, или где электрон или мюон от распада τ или W не регистрируются детектором;
- события γ + струя, в которых большой E^{miss} возникает из комбинации реального E^{miss} от нейтрино в распадах тяжелых кварков и от неверно измеренной энергии струй;
- события $W(e\nu)$, t-кварк и $t\bar{t}$, где электрон в конечном состоянии неверно идентифицируется как фотон $(e \to \gamma)$;
- события от рождения tt̄γ, когда один или оба W-бозона от распада t-кварка распадаются на лептоны. Эти лептоны либо распадаются на τ-лептоны, которые либо распадаются на адроны, либо не реконструируются;
- события $Z(ll) + \gamma$ (преимущественно τ -лептоны), где τ распадается на адроны или когда электрон или мюон от распада τ или Z не регистрируется.

Потерянный поперечный импульс $ec{p}_{ ext{T}}^{ ext{miss}}$

Определяется как сумма поперечных импульсов частиц в конечном состоянии со знаком минус $ec{p}_{
m T}^{\,
m miss}\,=\,-\sumec{p}_{
m T}^{f}$

$$\begin{split} E_{x(y)}^{\text{miss}} &= E_{x(y)}^{\text{miss, e}} + E_{x(y)}^{\text{miss, \gamma}} + E_{x(y)}^{\text{miss, jets}} + \\ &+ E_{x(y)}^{\text{miss, soft}} + E_{x(y)}^{\text{miss, \mu}} \end{split}$$

Софттерм реконструируется как $p_{x(y)}^{\mathrm{miss,\ SoftTerm}}$ потерянный поперечный импульс не ассоциированный ни с одной из жестких частиц.

 $E_{
m T}^{
m cone20}$ задает энерговыделение в калориметре внутри конуса раствором $\Delta R=0.2\,$ внутри трека кандидата в фотон

Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$ = $E_{\mathrm{T}}^{\mathrm{miss}^2}/(\sigma_L^2(1-\rho_{LT}^2))$

где σ_L – дисперсия измерения потерянного поперечного импульса в продольном направлении

 РLT – корреляционный фактор измерения
 продольной и поперечной компонент
 потерянного поперечного импульса

АВСО метод

 $loose'2: w_{s3}, F_{side}$

 $loose'3: w_{s3}, F_{side}, \Delta E$

 $loose'4: w_{s3}, F_{side}, \Delta E, E_{ratio}$

 $loose'5: w_{s3}, F_{side}, \Delta E, E_{ratio}, w_{tot}$

- ws3 ширина электромагнитного ливня с использованием трёх стриповых (первых слоёв ЭМ калориметра) слоёв вокруг стрипового слоя с максимальной энергией
- Fside доля энергии вне трёх стриповых слоёв, но внутри семи слоёв
- ΔЕ разница энергий стриповых слоёв, где в одном слое выделилась вторая по величине энергия, и слоя, где выделилась наименьшая энергия
 ^γ
- Eratio отношение разности энергий, ассоциированных с наиболее высоким и вторым по величине выделением энергии к сумме этих энергий
- wtot полная поперечная ширина ливня

Isolated Nor

Non-Isolated

A (C0): $E_T^{cone20} - 0.065 p_T^{\gamma} < 0$, tight B (K0): isogap $< E_T^{cone20} - 0.065 p_T^{\gamma}$, tight C (K0): $E_T^{cone20} - 0.065 p_T^{\gamma} < 0$, non-tight D (K0): isogap $< E_T^{cone20} - 0.065 p_T^{\gamma}$, non-tight

$$\left(N_A^{jet
ightarrow \gamma}=$$
 1770 ± 160 ± 300 $ight)$

Идентификация фотона

Category	Description	Name	loose	tight	Description	Name	loose	tight
Acceptance	$ \eta < 2.37$, with $1.37 \le \eta < 1.52$ excluded	-	~	~	Total lateral shower width $\sqrt{(\Sigma E_i(i - i_{\text{max}})^2)/(\Sigma E_i)}$, where i	Wstot		~
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ or $ \eta > 1.52$)	<i>R</i> _{had1}	~	\checkmark	runs over all strips in a window of $20 \times 2 \eta \times \phi$ strips, and i_{max} is the index of the highest-energy strip measured in the strip layer	0.00		
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	<i>R</i> _{had}	~	\checkmark	Energy outside the core of the three central strips but within seven strips divided by energy within the three central strips	<i>f</i> side		\checkmark
EM middle layer	Ratio of the energy in $3 \times 7 \eta \times \phi$ cells over the energy in 7×7 cells centered around the photon cluster position	R_{η}	~	\checkmark	Difference between the energy associated with the second	ΔE_s		\checkmark
	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the energy and η_i is the pseudorapidity of cell <i>i</i> and the sum is calculated within a window of 3 × 5 cells	w_{η_2}	~	\checkmark	the strip with the minimum value found between the first and second maxima			
	Ratio of the energy in $3 \times 3 \eta \times \phi$ cells over the energy of 3×7 cells centered around the photon cluster position	R_{ϕ}		\checkmark	Ratio of the energy difference between the maximum energy deposit and the energy deposit in the secondary maximum in the cluster to the sum of these energies	E _{ratio}		\checkmark
EM strip layer	Lateral shower width, $\sqrt{(\Sigma E_i(i - i_{\max})^2)/(\Sigma E_i)}$, where <i>i</i> runs over all strips in a window of $3 \times 2 \eta \times \phi$ strips, and i_{\max} is the index of the highest-energy strip calculated from three strips around the strip with maximum energy deposit	<i>W</i> ₅ 3		\checkmark	Ratio of the energy in the first layer to the to the total energy of the EM cluster	f_1		✓
0.7 A77 0.6 0.7 A77 0.7 0.7 A77 0.6 0.7 0.7 A77 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7	$AS internal 3 \text{ TeV}, 140 \text{ fb}^{-1} Slice [0.065 - 0.09] Slice [0.09 - 0.115] Slice [0.14 - 0.165] 4 \text{ File } 3 \text{ TeV}, 140 \text{ fb}^{-1} Slice [0.14 - 0.165] 4 \text{ File } 3 \text{ TeV}, 140 \text{ fb}^{-1} 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.5 \\ 0.4 \\ 0.3 \\ 0.2 \\ 0.1 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.3 \\ 0.2 \\ 0.3 \\ 0.3 \\ 0.4 \\ 0.4 \\ $	= Sice [0.085 - Sice [0.09 - 0] Sice [0.115 - Sice [0.115 - Sice [0.115 - Sice [0.114 - 0] Sice [0.115 - Sice [0.09)		Silve $[0.065 - 0.09]$ $(\overline{s}=13 \text{ TeV}, 140 \text{ fb}^{-1}$ $(\overline{s}=13 \text{ TeV}, 140 $	al → Slice → Slice → Slice → jet → 600 800	10.065 - 0.09] [0.09 - 0.115] [0.115 - 0.115] [0.115 - 0.14] [0.114 - 0.165] γ in SR 	

К. Казакова (НИЯУ МИФИ)

Защита НИРС 29.01.2024

Метод слайсов для оценки формы *jet* → γ

1золяция

 $T = \frac{N_{CR1}}{N_{CR2}} = \frac{N_{CR2}}{N_{CR2}}$

Стратегия:

- Разделение фазового пространства на 4 ортогональные области на основе критерия изолированности фотонов и кинематических отборов.
- Отношение количества событий jet → γ в KO1 и KO3 равно отношению количества событий jet → γ в KO2 и CO.
- Нормировка событий осуществляется в КОЗ, где распределение jet → γ событий взято из КО1 из данных.
- 4. Во избежание зависимости от изоляции, неизолированные
 КО1 и КО2 разделяются на более мелкие области, т.н. слайсы:

 x^{jet→γ}
 x^{data}
 x^Z(*νν̄*)γ
 x^{bkg}

 $N_{\text{CR1(i)}}^{jet \to \gamma} = N_{\text{CR1(i)}}^{\text{data}} - N_{\text{CR1(i)}}^{\text{Z}(\nu\bar{\nu})\gamma} - N_{\text{CR1(i)}}^{\text{bkg}}$ $N_{\text{FR(i)}}^{jet \to \gamma} \approx T_{(i)} \cdot N_{\text{CR1(i)}}^{jet \to \gamma}$

KO1	KO2
Ет ^{miss} < 130 ГэВ или	Е _т ^{miss} > 130 ГэВ
Ет ^{miss} sig. < 8 или	E _T ^{miss} sig. > 11
∆φ(р⊤ ^{miss} , ү) < 0.7 или	Δφ(p _T ^{miss} , γ) > 0.7
∆φ(p⊤ ^{miss} , j ₁) < 0.4	∆φ(p⊤ ^{miss} , j ₁) > 0.4
Tight	Tight
Неизолированная	Неизолированная
КОЗ + т	CO ⁺ T
Ет ^{miss} < 130 ГэВ или	Ет ^{miss} > 130 ГэВ
Ė _T ^{miss} sig. < 8 или	E _T ^{miss} sig. > 11
∆φ(р⊤ ^{miss} , γ) < 0.7 или	Δφ(p⊤ ^{miss} , γ) > 0.7
∆φ(p⊤ ^{miss} , j ₁) < 0.4	∆φ(p⊤ ^{miss} , j ₁) > 0.4
Tight	Tight
Изолированная	Изолированная

Кинематические отборы

5. В итоге, оцененное количество событий *jet* → γ экстраполируется в сигнальную область:

$$N_{\mathrm{SR(i)}}^{jet \to \gamma} = T_{(i)} \cdot \left(N_{\mathrm{CR2(i)}}^{\mathrm{data}} - N_{\mathrm{CR2(i)}}^{\mathrm{Z}(\nu\bar{\nu})\gamma} - N_{\mathrm{CR2(i)}}^{\mathrm{bkg}} \right)$$