Оценка пайлап фона в исследовании ассоциированного рождения Z-бозона с фотоном

Студент бакалавриата: Жарова В.С.

Научные руководители: Казакова К. К., инженер Пятиизбянцева Д.Н., инженер Солдатов Е. Ю., к.ф.-м.н., доцент

НИЯУ МИФИ 27.12.2023

Кафедра №40 физики элементарных частиц

В. Жарова (НИЯУ МИФИ)

Мотивация и цели

Мотивация:

Измерение сечений процесса с конечным состоянием Z(vv)ү и сравнение

 результата с теоретическими предсказаниями в рамках Стандартной модели;

Поиск аномальных трехбозонных вершин, чувствительных к физике вне Стандартной модели – "новой физике".

<u>Цель:</u>

Оценить число фоновых событий, обусловленных множественными pp взаимодействиями при пересечении пучков, в процессе ассоциированного рождения Z(vv)γ.

Актуальность:

Нестабильность доли фоновых событий, обусловленных множественными pp взаимодействиями, вычисляемой с помощью метода, рассмотренного в прошлом семестре*, даёт мотивацию для рассмотрения альтернативных подходов оценки данного фона. *(подробнее в back-up)

(a)

(b)

Область фазового пространства

Сигнал: Z(vv)ү Фоны: ү+jets, W(\rightarrow lv)ү, e \rightarrow ү, jet \rightarrow ү, Z(ll)ү, ttү

Критерии отбора событий Z(vv)ү:

Переменная	Ограничение
E_{T}^{γ}	> 150ГэВ
$E_{\mathrm{T}}^{\mathrm{miss}}$	> 130ГэВ
Число жестких фотонов	$N_\gamma=1$
Лептонное вето	$N_\mu=0,N_e=0 \ N_ au=0$
Значимость $E_{\mathrm{T}}^{\mathrm{miss}}$	> 11
$ \Delta \phi(ec{p}_{\mathrm{T}}^{\mathrm{miss}},\gamma) $	> 0.6
$ \Delta \phi(ec{p_{ ext{T}}}^{ ext{miss}},j_1) $	> 0.3

Исследуемый фон:

Фон, обусловленный множественными pp взаимодействиями, происходящими внутри пересечения пучков, т.н. пайлап фон, является источником событий, в которых Z-бозон может быть ассоциирован с фотоном из другого pp столкновения.

• Критерии изоляции фотона:

Изоляция	Калориметрическая изоляция	Трековая изоляция
FixedCutLoose	$E_{\mathrm{T}}^{\mathrm{cone20}}$ - 0.065 $\cdot p_{\mathrm{T}}^{\mathrm{cone20}}{<}0$ ГэВ	$p_{\mathrm{T}}^{\mathrm{cone20}}/p_{\mathrm{T}}^{\gamma}{<}0.05$

<u>Сигнальная область (CO):</u> события проходят отборы и содержат изолированный фотон.

Защита НИРС 27.12.2023

Метод, основанный на данных I

- Метод, основанный на данных, использует распределение продольного расстояния Δz = z_{vtx} z_γ между положением первичной вершины z_{vtx} и положением кандидата в фотон z_v;
- Форма распределения Δz получена из предположения, что распределения z_{vtx} и z_γ идентичны и некоррелированы;
- Распределения z_{vtx} и z_γ Гауссовы с σ=35 mm. Распределение разности Δz = z_{vtx} z_γ также Гауссово с σ~50 mm;
- Доля пайлап фона по отношению к данным вычисляется в области |Δz| > 50 мм, где в соответствии со свойствами распределения Гаусса лежит 32% от числа всех событий:

$$f_{\rm PU} = \frac{N_{\rm data\ excl.\ bkg}^{|\Delta z| > 50 \rm mm} - N_{\rm MC}^{|\Delta z| > 50 \rm mm}}{N_{\rm data\ } \times 0.32}$$

Для области |Δz| > 15 мм с увеличенной статистикой:

Метод, основанный на данных II

- Распределение данных за вычетом числа фоновых событий, не относящихся к пайлап фону, по Δz в CO только для событий с конверсионными фотонами, сопоставленное с сигнальным Z(vv)γ MK набором;
- Значения количества событий с конверсионными фотонами в данных и оцененных фонах в СО без ограничений на |Δz|, используемые для оценки фоновых пайлап событий:

Данные	$Z(uar{ u})\gamma$	$W\gamma,tt\gamma$	$e \to \gamma$	$jet \rightarrow \gamma$	$\gamma + jet$	$Z(ll)\gamma$
5920 ± 80	1884 ± 4	749 ± 11	1989 ± 9	890 ± 180	780 ± 80	55.1 ± 1.9

Доля пайлап фона по отношению к данным составляет:

Область	Данные – фон	$Z(uar{ u})\gamma$	$f_{\rm PU},\%$	
$ \Delta z > 15$ mm	560 ± 170	633 ± 2	-2 ± 4	
$ \Delta z > 50$ MM	200 ± 130	302.6 ± 1.4	-5 ± 7	
			***************************************	¢ - 1

Результат, полученный с помощью подхода на данных, говорит о <u>незначительном</u> вкладе исследуемого фона в число событий СО.

Однако, точность полученной оценки мотивирует рассмотреть альтернативный подход.

Метод Монте-Карло наложений (МКН)

Стратегия:

1. Используются две независимые А и В выборки на генераторном уровне для получения оценки числа пайлап событий (А+В события) в процессе дибозонного рождения (АВ события);

2. Производится наложение В на А путем добавления объектов (например, фотонов, струй и т.д.) из события В процесса в событие А процесса <u>с целью сформировать A+B</u> событие;

3. Переменные, определяющие конечное AB состояние, вычисляются для A+B события и используются для проверки на соответствие критериям отбора событий;

- 4. Вес скомбинированного A+B события определяется согласно: $w_{A+B} = \frac{w_A w_B}{\langle w_A \rangle \langle w_B \rangle} \frac{L \sigma_{A+B}}{N_{OMC}}$
- 5. Число пайлап событий на уровне генератора: $N_{
 m A+B}^{
 m gen} = \sum w_{
 m A+B}$

6. Ожидаемое число пайлап событий на уровне реконструкции в СО: $N_{A+B}^{
m rec} = N_{A+B}^{
m gen} C$, где С – коррекционный фактор, учитывающий потерю сигнала при переходе от уровня генератора к уровню реконструкции.

В. Жарова (НИЯУ МИФИ)

Защита НИРС 27.12.2023

 $\sigma_{\mathrm{A+B}} = \langle \mu
angle rac{\sigma_{\mathrm{A}} \sigma_{\mathrm{B}}}{-----}$

Реализация метода МКН

- Независимые Z-бозон и фотон, взятые из Z+jets и γ+jets MK наборов, используются в качестве A и B компонент соответственно;
- Комбинация событий производится на уровне генератора в доверительной области (ДО) фазового пространства для конечного Z(vv)γ состояния;
- Фотон из каждого γ+jets набора накладывается на случайным образом выбранный Z-бозон из каждого Z+jets набора до тех пор, пока не станет частью Z+γ события, проходящего отборы Д0;
- Процедура наложения осуществляется в пределах каждой из кампаний MC16a/d/e;
- Статистика объёмных ү+jets МК наборов уменьшается до 100000 событий;
- Суммарное число пайлап событий на уровне генератора получается путем комбинации каждого ү +jets набора последовательно с каждым Z + jets набором.

<u>Доверительная область:</u>

	Объект	Ограничение
	Фотон	Изолированный, $E_{\mathrm{T}}^{\gamma} > 150$ ГэВ
		$ \eta < 2.37$ за исключением $1.37 < \eta < 1.52$
C	Струя	$ \eta < 4.5$
		$p_T > 50 \; \Gamma$ эВ
		$\Delta R(jet,\gamma) > 0.3$
	Лептон	$N_l=0$
	Нейтрино	$p_{ m T}^{ uar{ u}}>130$ ГэВ
	События	Значимость $E_{\mathrm{T}}^{\mathrm{miss}} > 11$
		$ \Delta \phi(ec{p}_{ m T}^{ m miss},\gamma) >0.6$
		$ \Delta \phi(ec{p}_{ m T}^{ m miss},j_1) >0.3$

Вес и сечение Z+ү события:

Коррекционный фактор

- С-фактор параметризован по поперечному импульсу фотона, так как общее число пайлап событий на уровне генератора суммируется из числа пайлап событий, вычисляемых для каждого ү +jets набора.
 - Оценка коррекционных факторов на основе МК Z(vv)ү для 4 интервалов по поперечному импульсу фотона [150; 280; 500; 1000; 2000] ГэВ:

- Итоговая оценка* фоновых событий, обусловленных множественными pp столкновениями, в CO составляет: N^{SR}_{Z+\u03c7} = 20.502 ± 0.017(стат.) событий;
 *(более детально в back-up)
- Статистическая погрешность числа пайлап событий включает погрешности весов w и w событий, участвующих в комбинации ү +jets наборов с Z +jets наборами, а также погрешность C-фактора;
 - Доля пайлап событий по отношению к данным, полученная с помощью метода МКН, составляет (0.0877 ± 0.0006)%.

Заключение

- Σ С помощью метода, основанного на данных, получена доля фоновых событий, обусловленных множественными pp взаимодействиями, по отношению к данным, вычисленная в области |Δz| > 50 мм. Значение составляет: f^{|Δz|>50mm} = (-5 ± 7)%
 - установлено, что из-за низкой точности метод, основанный на данных, может использоваться <u>только для проверки и подтверждения результатов</u>, полученных альтернативными методами оценки исследуемого фона.
- Разработан альтернативный подход для оценки пайлап событий метод Монте-Карло наложений;
 - установлено, что данный метод <u>статистически более точен</u>, чем метод, основанный на данных.
- Доля пайлап событий по отношению к данным, полученная с помощью метода Монте-Карло наложений, составляет (0.0877 ± 0.0006)%;
 - установлено, что вклад пайлап фона в число событий СО <u>незначителен</u>.

В дальнейшем планируется получение систематической погрешности для оценки числа пайлап событий, полученной методом МКН.

Спасибо за внимание!

В. Жарова (НИЯУ МИФИ)

Переменные отбора событий Z(vv)ү

- Эначимость E^{miss} это величина, отделяющая события с правдивой величиной потерянной поперечной энергии от событий с "ложной" величиной, в основном обусловленной либо неполной реконструкцией адронных струй, либо от неверного измерения их энергии, что приводит к увеличению изначально низкой величины потерянного поперечного импульса;
- \vec{p}_{T}^{miss} потерянный поперечный импульс, определяемый как сумма поперечных импульсов частиц в конечном состоянии;
- $E_{\rm T}^{\rm cone20}, \, p_{\rm T}^{\rm cone20}$ энерговыделение в калориметре и суммарный поперечный импульс в трекере внутри конуса раствором ΔR =0.2 вокруг трека кандидата в фотон, где $\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$ угловое расстояние между частицами;
- Псевдобыстрота $\eta = -\ln\left(\tan\left(\frac{\theta}{2}\right)\right)$ безразмерная физическая величина, показывающая отклонение движения элементарной частицы от оси пучка.

 σ_L – дисперсия измеренного $E_{\mathrm{T}}^{\mathrm{miss}}$ в продольном направлении;

 $S^{2} = \frac{\left|\boldsymbol{E}_{\mathrm{T}}^{\mathrm{miss}}\right|^{2}}{\sigma_{\mathrm{L}}^{2} \left(1 - \rho_{\mathrm{LT}}^{2}\right)}$

 ho_{LT} - корреляционный фактор измерения продольной и поперечной компонент $E_{\mathrm{T}}^{\mathrm{miss}}$;

back-up: 1/10

измеј а продольно о

Идентификация фотонов I

- Идентификация фотонов опирается на различия распределений ЭМ ливня в калориметре от настоящих фотонов и адронных струй, которые могут породить похожий отклик детектора.
- «Loose» селекция: фотон, для которого по крайнем мере один из критериев формы ЭМ ливня нарушается.
- «Tight» селекция обеспечивает эффективность идентификации фотонов на уровне 85%.

*Эффективность отбора вычисляется как отношение числа сигнальных событий после отбора к числу сигнальных событий до отбора.

$\varepsilon = N_{\text{passed}}/N_{a}$	ıll
---	-----

Category	Description	Name	loose	tight
Acceptance	$ \eta < 2.37$, with $1.37 \le \eta < 1.52$ excluded	_	\checkmark	\checkmark
Hadronic leakage	Ratio of $E_{\rm T}$ in the first sampling layer of the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $ \eta < 0.8$ or $ \eta > 1.52$)	R_{had_1}	V	\checkmark
	Ratio of $E_{\rm T}$ in the hadronic calorimeter to $E_{\rm T}$ of the EM cluster (used over the range $0.8 < \eta < 1.37$)	<i>R</i> _{had}	✓	\checkmark
EM middle layer	Ratio of the energy in $3 \times 7 \eta \times \phi$ cells over the energy in 7×7 cells centered around the photon cluster position	R_{η}	V	\checkmark
	Lateral shower width, $\sqrt{(\Sigma E_i \eta_i^2)/(\Sigma E_i) - ((\Sigma E_i \eta_i)/(\Sigma E_i))^2}$, where E_i is the energy and η_i is the pseudorapidity of cell <i>i</i> and the sum is calculated within a window of 3 × 5 cells	w_{η_2}	V	\checkmark
	Ratio of the energy in $3 \times 3 \eta \times \phi$ cells over the energy of 3×7 cells centered around the photon cluster position	R_{ϕ}		\checkmark
EM strip layer	Lateral shower width, $\sqrt{(\Sigma E_i(i - i_{\max})^2)/(\Sigma E_i)}$, where <i>i</i> runs over all strips in a window of $3 \times 2 \eta \times \phi$ strips, and i_{\max} is the index of the highest-energy strip calculated from three strips around the strip with maximum energy deposit	<i>W</i> _{<i>s</i>} 3		V

Table 1: Discriminating variables used for *loose* and *tight* photon identification.

Защита НИРС 27.12.2023

Идентификация фотонов II

Table 1: Discriminating variables used for *loose* and *tight* photon identification.

Category	Description	Name	loose	tight
	Total lateral shower width $\sqrt{(\Sigma E_i(i - i_{\max})^2)/(\Sigma E_i)}$, where <i>i</i> runs over all strips in a window of $20 \times 2 \eta \times \phi$ strips, and i_{\max} is the index of the highest-energy strip measured in the strip layer	W _{s tot}		√
	Energy outside the core of the three central strips but within seven strips divided by energy within the three central strips	$f_{\rm side}$		\checkmark
	Difference between the energy associated with the second maximum in the strip layer and the energy reconstructed in the strip with the minimum value found between the first and second maxima	ΔE_s		V
	Ratio of the energy difference between the maximum energy deposit and the energy deposit in the secondary maximum in the cluster to the sum of these energies	E _{ratio}		\checkmark
	Ratio of the energy in the first layer to the to the total energy of the EM cluster	f_1		√

Метод, основанный на данных, с использованием нормировочных коэффициентов I

• Доля пайлап фона: $f_{\rm PU} = \frac{N_{\rm data}^{|\Delta z| > 50mm} - N_{\rm single \, pp}^{|\Delta z| > 50mm}}{0.32 \times N_{\rm data}}$, где $N_{\rm single \, pp}^{|\Delta z| > 50mm} = {\rm SF}_1 \times {\rm SF}_2 \times N_{\rm MC}^{|\Delta z| > 50mm}$ • Расширенная область: $f_{\rm PU} = \frac{N_{\rm data}^{|\Delta z| > 15mm} - {\rm SF}_1 \times {\rm SF}_2 \times N_{\rm MC}^{|\Delta z| > 15mm}}{0.76 \times N_{\rm data}}$

SF₁, SF₂ – нормировочные коэффициенты для МК сигнала в области |Δz|<10 mm и |Δz|>15 mm соответственно.

Доля пайлап фона, полученная в областях |Δz|>15 мм и |Δz|>50 мм для различного числа струй:

	$N_{\rm jets} \geqslant 0$	$N_{ m jets}>0$	$N_{ m jets} > 1$	$N_{ m jets}{=}0$
$f_{PU}^{ \Delta z >15\mathrm{mm}},\%$	-15 ± 3	13.0 ± 1.7	17 ± 3	-29 ± 5
$f_{PU}^{ \Delta z > 50 \mathrm{mm}},\%$	-34 ± 13	12 ± 3	12 ± 4	-56 ± 19

Результаты говорят о <u>нестабильности</u> доли пайлап фона, вычисленной с помощью метода, основанного на данных, использующего нормировочные коэффициенты.

Метод, основанный на данных, с использованием нормировочных коэффициентов II

$N_{jets} \ge 0$

- SF1= 4.46 ± 0.08
- $|\Delta z| > 15 \text{ mm: } f_{PU} = (-15 \pm 3)\%$
- $|\Delta z| > 50 \text{ mm: } f_{PU} = (-34 \pm 13)\%$

N_{jets}>0

- SF1= 4.24 ± 0.12
- |∆z|>15 mm: f_{PU}=(13.0±1.7)%
- $|\Delta z| > 50 \text{ mm: } f_{PU} = (12 \pm 3)\%$

N_{jets}>1

- SF1= 5.7 ± 0.3
- |∆z|>15 mm: f_{PU}=(17±3)%
- |∆z|>50 mm: f_{PU}=(12±4)%

Требования к фотону в методе на данных

Поскольку продольная координата z_ү кандидата в фотон плохо восстанавливается, неопределенность в измерении z_ү обычно оказывается намного больше, чем среднее продольное расстояние между несколькими первичными вершинами.

- Для увеличения точности восстановленной z_ү используются конверсионные фотоны, ассоциированные как минимум с одним треком в кремниевом детекторе: singleSi, doubleSi, doubleSiTRT.
- В. Жарова (НИЯУ МИФИ)

Репрезентативность ү+jets выборки на примере 361045 МК набора

В. Жарова (НИЯУ МИФИ)

Защита НИРС 27.12.2023

back-up: 7/10

Информация об используемых ү+jets и Z+jets наборах в методе МКН

Эначения генераторного поперечного сечения и значения количества событий, прошедших отборы ДО для соответствующих объектов ү+jets и Z+jets процессов, в каждой из кампании.

> v+iets

$\gamma + \text{jets}$	$p_{\mathrm{T}}^{\gamma},$ ГэВ	$\sigma_{\gamma}^{ m gen},$ нб	${ m N}_{\gamma}^{ m MC16a}$	${ m N}_{\gamma}^{ m MC16d}$	${\rm N}_{\gamma}^{ m MC16e}$
361045	140-280 CVetoBVeto	2.4733e-1	5730863	7164490	9722954
361046	140-280 CFilterBVeto	2.4730e-1	3531410	4412930	5989939
361047	140-280 BFilter	2.4928e-1	3488508	4388563	5906211
361048	280-500 CVetoBVeto	1.3636e-2	3473982	4338889	5899403
361049	280-500 CFilterBVeto	1.3636e-2	1311955	1688373	2224485
361050	280-500 BFilter	1.3871e-2	1564949	1983444	2557681
361051	500-1000 CVetoBVeto	9.2491e-4	739530	923512	1255073
361052	500-1000 CFilterBVeto	9.2369e-4	555049	695226	943402
361053	500-1000 BFilter	9.4472e-4	110999	138837	193315
361054	1000-2000 CVetoBVeto	1.8485e-5	480505	601956	816193
361055	1000-2000 CFilterBVeto	1.8466e-5	240505	307718	413754
361056	1000-2000 BFilter	1.8978e-5	67307	86534	115429

Различие между кампаниями проводится по энергии БАК в системе центра масс, геометрии детектора и версии программного обеспечения. Кампании MC16a, MC16d и MC16e отвечают 2015-2016, 2017 и 2018 календарным годам соответственно.

Z+jets

Z + jets	$p_{\mathrm{T}}^{\mathrm{Z}}, \Gamma$ эВ	$\sigma_Z^{ m gen},$ нб	$N_{\rm Z}^{\rm MC16a}$	$N_{\rm Z}^{\rm MC16d}$	$\rm N_Z^{\rm MC16e}$
364222	500-1000	3.0440e-4	136217	103989	171221
364223	> 1000	5.8558e-6	70715	70269	116466
366011	100-140 BFilter	1.0910e-1	20	25	74
366012	100-140 BFilter	$4.5514\mathrm{e}{\text{-}3}$	76	82	233
366013	100-140 BFilter	1.2029e-3	72	92	248
366014	140-280 BFilter	5.1779e-2	3933	4913	13228
366015	140-280 BFilter	4.4678e-3	1257	1457	4303
366016	140-280 BFilter	1.3760e-3	688	801	2227
366017	280-500 BFilter	4.2467 e-3	6939	6946	22675
366020	100-140 CFilterBVeto	1.0912e-1	20	22	32
366021	100-140 CFilterBVeto	4.5539e-3	100	107	152
366022	100-140 CFilterBVeto	1.2024e-3	115	113	163
366023	140-280 CFilterBVeto	5.1774e-2	2965	3696	4833
366024	140-280 CFilterBVeto	4.4680e-3	1576	1754	2682
366025	140-280 CFilterBVeto	1.3755e-3	1461	1512	2352
366026	280-500 CFilterBVeto	4.2483e-3	20247	25527	33481
366029	100-140 CVetoBVeto	1.0914e-1	10	22	26
366030	100-140CVeto BVeto	4.5575e-3	72	80	111
366031	100-140 CVeto BVeto $% \left({{\rm A}} \right)$	1.2022e-3	101	121	161
366032	140-280 CVeto BVeto $% \left({{\rm A}} \right)$	5.1778e-2	19845	24856	33351
366033	140-280 CVetoBVeto	4.4714e-3	3857	4764	6465
366034	140-280 CVetoBVeto	1.3755e-3	3848	3858	6365
366035	280-500 CVetoBVeto	4.2499e-3	25435	31390	42087

Коррекционный фактор

Коррекционный фактор, параметризованный по поперечному импульсу фотона, для MC16a/d/e

Результаты в интервалах по р

أعمع				
	$\gamma + jets$	MC16a	MC16d	MC16e
	361045	$(150.9 \pm 0.3) \cdot 10^{-2}$	$(276.7 \pm 0.6) \cdot 10^{-2}$	$(348.1 \pm 0.5) \cdot 10^{-2}$
	361046	$(150.9\pm0.3)\cdot10^{-2}$	$(276.6\pm0.6)\cdot10^{-2}$	$(348.1\pm0.5)\cdot10^{-2}$
	361047	$(152.0\pm0.3)\cdot10^{-2}$	$(278.9\pm0.6)\cdot10^{-2}$	$(350.9\pm0.5)\cdot10^{-2}$
	361048	$(831.9\pm1.5)\cdot10^{-4}$	$(152.6\pm0.3)\cdot10^{-3}$	$(192.0\pm0.3)\cdot10^{-3}$
	361049	$(831.6\pm1.5)\cdot10^{-4}$	$(152.6\pm0.3)\cdot10^{-3}$	$(191.9\pm0.3)\cdot10^{-3}$
	361050	$846.3 \pm 1.5) \cdot 10^{-4}$	$(155.2\pm0.3)\cdot10^{-3}$	$(195.2\pm0.3)\cdot10^{-3}$
	361051	$(564.5\pm1.0)\cdot10^{-5}$	$(103.4\pm0.2)\cdot10^{-4}$	$(130.2\pm0.2)\cdot10^{-4}$
	361052	$(563.2\pm1.0)\cdot10^{-5}$	$(103.3\pm0.2)\cdot10^{-4}$	$(130.0\pm0.2)\cdot10^{-4}$
	361053	$(576.4 \pm 1.0) \cdot 10^{-5}$	$(105.7\pm0.2)\cdot10^{-4}$	$(133.0\pm0.2)\cdot10^{-4}$
	361054	$(112.7\pm0.2)\cdot10^{-6}$	$(206.9\pm0.4)\cdot10^{-6}$	$(260.1\pm0.4)\cdot10^{-6}$
	361055	$(112.6\pm0.2)\cdot10^{-6}$	$(206.7 \pm 0.4) \cdot 10^{-6}$	$(260.0\pm0.4)\cdot10^{-6}$
	361056	$(115.7 \pm 0.3) \cdot 10^{-6}$	$(212.3\pm0.5)\cdot10^{-6}$	$(267.2\pm0.4)\cdot10^{-6}$
	Интеграл	4.806 ± 0.005	$8.81 {\pm} 0.01$	$11.091 {\pm} 0.009$

Значения суммарного числа пайлап событий <u>на уровне генератора</u>для каждого ү+jets набора, полученные путем последовательной комбинации с каждым Z+jets набором. Значения интегральной светимости L и среднего числа неупругих pp столкновений <µ> для каждой кампании:

Уровень реконструкции:

$\gamma + jets$	MC16a	MC16d	MC16e
361045	$(131.0 \pm 0.4) \cdot 10^{-2}$	$(225.7 \pm 0.6) \cdot 10^{-2}$	$(287.1\pm0.6)\cdot10^{-2}$
361046	$(131.0\pm0.4)\cdot10^{-2}$	$(225.6\pm0.7)\cdot10^{-2}$	$(287.0\pm0.7)\cdot10^{-2}$
361047	$(132.0 \pm 0.4) \cdot 10^{-2}$	$(227.4 \pm 0.6) \cdot 10^{-2}$	$(289.4\pm0.7)\cdot10^{-2}$
361048	$(70.9 \pm 0.4) \cdot 10^{-3}$	$(124.8 \pm 0.7) \cdot 10^{-3}$	$(157.9\pm0.7)\cdot10^{-3}$
361049	$(70.9 \pm 0.4) \cdot 10^{-3}$	$(124.8 \pm 0.7) \cdot 10^{-3}$	$(157.8 \pm 0.7) \cdot 10^{-3}$
361050	$(72.2 \pm 0.4) \cdot 10^{-3}$	$(126.9 \pm 0.7) \cdot 10^{-3}$	$(160.5 \pm 0.8) \cdot 10^{-3}$
361051	$(47.5 \pm 0.8) \cdot 10^{-4}$	$(83.0 \pm 1.4) \cdot 10^{-4}$	$(108.0 \pm 1.5) \cdot 10^{-4}$
361052	$(47.4 \pm 0.8) \cdot 10^{-4}$	$(82.9 \pm 1.4) \cdot 10^{-4}$	$(107.8 \pm 1.5) \cdot 10^{-4}$
361053	$(48.5 \pm 0.9) \cdot 10^{-4}$	$(84.9 \pm 1.5) \cdot 10^{-4}$	$(110.3 \pm 1.6) \cdot 10^{-4}$
361054	$(9.0 \pm 0.9) \cdot 10^{-5}$	$(1.7 \pm 0.2) \cdot 10^{-4}$	$(18.9 \pm 1.7) \cdot 10^{-5}$
361055	$(9.0 \pm 0.9) \cdot 10^{-5}$	$(1.7\pm0.2)\cdot10^{-4}$	$(18.9 \pm 1.7) \cdot 10^{-5}$
361056	$(9.3 \pm 1.0) \cdot 10^{-5}$	$(1.2\pm0.2)\cdot10^{-4}$	$(19.4 \pm 1.5) \cdot 10^{-5}$
Интеграл	$4.169 {\pm} 0.006$	$7.189 {\pm} 0.011$	$9.144 {\pm} 0.011$

	MC16a	MC16d	MC16e
L, $\pi \delta^{-1}$	36646.74	44630.6	58791.6
$\langle \mu \rangle$	25.1	37.8	36.1

Поперечное сечение неупругого взаимодействия σ_{inel} = 80 mb

Нижняя строка соответствует итоговым значениям числа пайлап событий на уровне генератора и на уровне реконструкции в пределах MC16a/d/е кампании

Защита НИРС 27.12.2023