Бета-функция сигма-моделей с трёхмерным пространством полей в разных схемах перенормировки

Поляков Андрей Вадимович

Национальный исследовательский ядерный университет «МИФИ» Научный руководитель к.ф.-м.н., доц., PhD. Алфимов М. Н.

Отчет о научно-исследовательской работе Москва, 27 декабря 2023 г.

Сигма-модель

Действие сигма-модели определяется как

$$S(G) = \frac{1}{4\pi} \int G_{ij}(\mathbf{X}) \partial_{\mu} X^{i} \partial^{\mu} X^{j} d^{n} \sigma,$$

где G_{ij} – метрический тензор, который должен удовлетворять уравнению ренорм-группы (РГ)

$$\dot{G}_{ij} + \nabla_i V_j + \nabla_j V_i = -\beta_{ij}(G).$$

Бета функцию можно разложить по степеням \hbar

$$\beta_{ij}(G) = \beta_{ij}^{(1)}(G) + \beta_{ij}^{(2)}(G) + \beta_{ij}^{(3)}(G) + \dots$$

В схеме минимального вычитания (MS) известны выражения для первых порядков.

Мотивировка

Сигма-модели находят множество применений Например она проще и точнее позволяет получить некоторые результаты в квантовой хромодинамике (зарядорвый радиус пионов и каонов, массы пионов и некоторых нуклонов).

Она позволяет описывать квантовый эффект Холла и сверхтекучий гелий-3.

Перенормировка

Наша задача выяснить как изменяется бета функция при переопределении метрики. Пусть метрика преобразуется следующим образом

$$\widetilde{G}_{ij} = G_{ij} + G_{ij}^{(0)} + G_{ij}^{(1)} + G_{ij}^{(2)} + G_{ij}^{(3)} + \dots$$

где $G_{ij}^{(L)}$ — слагаемое с размерной характеристикой \hbar^L . Это делается для того, чтобы устранить расходимости в следующих приближениях по \hbar .

С помощью пакетов xTensor и xPert в Wolfram Mathematica из уравнения ренорм-группы была вычислена бета функция при новой метрике

Первое приближение

В первом приближение уравнению ренорм-группы удовлетворяет следующая метрика

$$ds^2 = \frac{2\kappa}{\hbar} \left(\frac{dr^2}{(1-r^2)(1-\kappa^2 r^2)} + \frac{1-r^2}{1-\kappa^2 r^2} \, d\varphi_1^2 + r^2 \, d\varphi_2^2 \right),$$

где $\hbar=\hbar(t)$, $\kappa=\kappa(t)$ – параметры, зависящие от масштаба энергии. Для данной метрики мы искали векторное поле в виде $V=\nabla\Psi$, где $\Psi=\frac{1}{2}\ln|1-\kappa^2r^2|$ и нашли ограничения на параметры \hbar и κ в виде дифференциальных уравнение

$$\begin{split} \dot{\hbar} &= 0; \\ \dot{\kappa} &= \hbar(\kappa^2 - 1). \end{split}$$

Второе приближение

Однако эта метрика не удовлетворяет уравнению ренорм-группы во втором приближении (\hbar^1) . Будем искать поправку $G_{ij}^{(0)}$ как диагональную матрицу, зависющую только от r. Бета функцию можно представить в следующем виде

$$\beta_{ij}^{(2)} = \beta_{ij}^{(1)}(G_{ij}) + \beta_{ij}^{(2)}(G_{ij}^{(0)}).$$

Эти компоненты легко вычислить, но результаты довольно громоздкие. Важно понимать, что там фигурирует константа c_2 . Выражения для векторного поля в общем виде получаются очень сложными, поэтому по аналогии с однопетлевым случаем будем искать $V=\nabla\Psi$, где $\Psi=\Psi(r)$

Гипотеза

Мы имеем следующую систему уравнений на функции $f_1(r)$, $f_2(r)$, $f_3(r)$ и $\Psi(r)$.

$$\begin{cases} \dot{G}_{11} + \beta_{11}^{(2)}(G_{ij}^{(0)}) + \beta_{11}^{(1)}(G_{ij}^{(1)}) + 2\nabla_{1}\nabla_{1}\Psi = 0, \\ \dot{G}_{22} + \beta_{22}^{(2)}(G_{ij}^{(0)}) + \beta_{21}^{(1)}(G_{ij}^{(1)}) + 2\nabla_{2}\nabla_{2}\Psi = 0, \\ \dot{G}_{33} + \beta_{33}^{(2)}(G_{ij}^{(0)}) + \beta_{33}^{(1)}(G_{ij}^{(1)}) + 2\nabla_{3}\nabla_{3}\Psi = 0. \end{cases}$$

1-е уравнение является дифференциальным уравнением второго порядка относительно Ψ , а 2-е и 3-е дифференциальным уравнением первого порядка относительно Ψ . Отсюда можно сделать вывод, что уравнения совместны, $f_2'(r)$ и $f_3'(r)$ отличаются на известный множитель.

Кроме того можно сделать предположение, что $f_3(r) = ar^2$.

Заключение

Были получены значения β -функции в первых трех порядках при возмущении метрики.

Было проверено, что метрика

$$ds^{2} = \frac{2\kappa}{\hbar} \left(\frac{dr^{2}}{(1-r^{2})(1-\kappa^{2}r^{2})} + \frac{1-r^{2}}{1-\kappa^{2}r^{2}} d\varphi_{1}^{2} + r^{2} d\varphi_{2}^{2} \right),$$

удовлетворяет РГ уравнению в первом приближении $(\hbar^0).$

Было сделано ряд предположений относительно второго приближения, чтобы упростить уравнения.

Дальнейшая работа подразумевает поиск констант a и c_2 , чтобы 2-е уравнение разделило 3-е, а так же поиск функций $f_1(r)$, $\Psi(r)$.