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Standard inflation
The Einstein gravity and scalar field (inflaton)
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Varying this action with respect to g, and ¢ in a spatially flat
Friedmann-Robertson-Walker universe with a scale factor a

ds? = —dt® + a(t)?0;;dx dx’,

yields the background equations for the standard inflation (
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Slow-roll approximation

The condition V/(¢) > %(975)2
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Restrict the form of potential (flat potential) (A.R. Liddle and D.H. Lyth)

Restrict the GWB spectrum (low-frequencies) (M. Maggiore; E. Komatsu)



Gauss-Bonnet Term

RZ5 = Rupo R — 4R, R" + R?

The simplest correction term in the low-energy effective action of the heterotic
string (Zwiebach B., Zumino B. )

The second order of Lovelock gravity (Lovelock D.), D > 4 in the case of
minimal coupling

Nonsingular cosmological solutions with Gauss-Bonnet Term (S. Tsujikawa,
R. Brandenberger and F. Finelli)



Inflation with GB correction
Now, we consider an action with the Gauss-Bonnet term that is coupled to a
scalar field
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The Gauss-Bonnet coupling £(¢) is required to be a function of a scalar field in
order to give nontrivial effects on the background dynamics.

Varying this action with respect to g, and ¢ yields the Einstein and field
equation in a spatially flat Friedmann-Robertson-Walker universe
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The background Einstein and field equations yield
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The equation (14) is the result of the equations (12)-(13). When & = const we

have the standard inflation.



The method of exact solutions

The exact solutions for D > 4 ( ).
Earlier, inflation for a single scalar field with nonminimal coupling to the
Gauss-Bonnet term in 4-dimensional FRW universe was considered on the basis

of slow-roll approximation, only ( ).
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Now, we define the connection between standard inflation and inflation with GB
correction

H=H(1-2¢H) (17)

When ¢ = const, the equations (12)—(13) are reduced to (3)—(4) and H = H.



The equations (12)—(13), in this case, are written as
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In the case of { = const, H = H and equations (18)—(19) are reduced to (3)—(4).
Thus, H is the Hubble parameter for standard inflationary models.
Now, we write the equations (18)—(19) in the following form

V = —4H? + THH + H (20)
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Further, by selecting the Hubble parameter H = H(t) and the scalar field
¢ = ¢(t) we will generate the exact solutions of equations (20)—(21).



De Sitter expansion
The scale factor

a(t) = ag exp (At)
Consider the inflationary model with

H(t)=A
¢(t) = Bexp(—At),

where A and B are the positive constants .

The exact solutions of the equations (20)—(21) and (17) are:

H(t) = AB? exp(—2At) + A
V(¢) = 5A%¢* 4 3A
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Power-law inflation
We consider the inflationary model with

H(t) = B/t
o(t) =+vB2+A—AB In(t) + ¢o,

where A, B are the positive constants.
The exact solutions of the equations (20)—(21) and (17) are:

H(t) = A/t
V(¢) = (—4B + TAB — A) exp(£2(¢ — ¢0)/C)

£(6) = 2 exp(F2(6 — 60)/C).
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where C = \/BziA — AB.
Thus, we obtain H = aH, where o = A/B.



Double-well potential
Consider the inflationary model with

H(t) = Cexp(—At),

¢(t) = Bexp <—§t>

The exact solutions of the equations (20)—(21) and (17) are:
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Cosmological perturbations

During inflation, quantum fluctuations of the scalar field will create a metric
perturbation. In a linear order, for the case of standard inflation for Fourier modes
scalar v, and tensor uy perturbation, Mukhanov-Sasaki equations are written as

follows ( )
d?v, 1d?*z
(1) o ()
d?u 1 d?a
dn2k ( 2 _d_772) u =0, (39)

where z = agzlﬁ/H, k — wavenumber, n — conformal time.



The exact cosmological parameters at the crossing of the Hubble radius
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On the basis of the connection H = H(1 — 2£H) one can calculate the exact
values of parameters of cosmological perturbations for inflation with GB

correction from this formulas.
For power-law inflation H = a«H we have:
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where t, is the time of Hubble radius crossing.
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For double-well potential H = H + (3 we have
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The high-frequency gravitational waves
The amplitude of gravitational waves at the end of the inflation in the selected
unit system is defined as follows ( )
hey = ———=
cw 472

The spectral energy density of gravitational waves
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where fg, fuin, fro fup — the frequencies of the gravitational waves at each stage
of evolution of the Universe
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Here H, = 67.8 + 0.9kms~*Mpc~*, Qg = 0.308 £ 0.012 and

Q. = (9.230 £ 0.022) x 107 are Hubble parameter, the density of matter and
radiation at the modern era, T,, = 1 x 10**GeV and H,, — reheating
temperature and Hubble parameter, that we take approximately same as the
temperature and Hubble parameter at the end of inflation.



The possibility of experimental detection of relic gravitational waves
To date, several projects of searching for gravitational waves, such as projects
LIGO (USA), VIRGO (ltaly, France), TAMA-300 (Japan), GEO-600 (Germany)
and others, are realized.
One of the promising methods for increasing the sensitivity of gravitational
antennas in the high frequency part of the spectrum is the use of low-frequency
optical resonance phenomenon (LOR) in the Fabry-Perot interferometer (

)
Minimum detectable spectral density fluctuations of the space-time by using
low-frequency optical resonance in a Fabry-Perot interferometer can be estimated

by the formula
2nk 2whf3/?
& (N >\ 78 om (62)

where k — phase shift that characterizes the setting of the interferometer , ¢ —
the speed of light , T — time averaging of the spectral density , A — loss per
cycle reflections , k. — wave number , Wy — power incident on the Fabry-Perot
interferometer monochromatic laser radiation , f - gravitational wave frequency.



To move to the value of the energy density of gravitational waves Qg (f), one

can use the formula

Qew () = 2 126, () (63)
where H, — the Hubble parameter. Substituting formula (62) in the expression
(63) gives an estimate for the minimum energy density of gravitational waves

that can be detected with the use of low-frequency optical resonance
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Qew/(f) for various experiments and for the case of low-frequency optical
resonance with the following setup switches: Kk = A, T = 10"sec (116 a day),
ke =5.9-10°mt , (A = 1.064um), Wy = 10* W.



