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Standard inflation
The Einstein gravity and scalar field (inflaton)

S =

∫
M

d4x
√
−g

[
1

2
R − 1

2
gµν∂µϕ∂νϕ− V (ϕ)

]
(1)

Varying this action with respect to gµν and ϕ in a spatially flat
Friedmann-Robertson-Walker universe with a scale factor a

ds2 = −dt2 + a(t)2δijdx
idx j , (2)

yields the background equations for the standard inflation (J. D. Barrow)

3H
2
=

1

2
(ϕ̇)2 + V (ϕ) (3)

1

2
(ϕ̇)2 = −Ḣ (4)



Slow-roll approximation

The condition V (ϕ) ≫ 1
2
(ϕ̇)2

3H
2 ≈ V (ϕ) (5)

1

2
(ϕ̇)2 = −Ḣ (6)

Restrict the form of potential (flat potential) (A.R. Liddle and D.H. Lyth)

Restrict the GWB spectrum (low-frequencies) (M. Maggiore; E. Komatsu)



Gauss-Bonnet Term

R2
GB = RµνρσR

µνρσ − 4RµνR
µν + R2

The simplest correction term in the low-energy effective action of the heterotic
string (Zwiebach B., Zumino B. )

The second order of Lovelock gravity (Lovelock D.), D > 4 in the case of
minimal coupling

Nonsingular cosmological solutions with Gauss-Bonnet Term (S. Tsujikawa,
R. Brandenberger and F. Finelli)



Inflation with GB correction
Now, we consider an action with the Gauss-Bonnet term that is coupled to a
scalar field

S =

∫
M

d4x
√
−g

[
1

2
R − 1

2
gµν∂µϕ∂νϕ− V (ϕ)− 1

2
ξ(ϕ)R2

GB

]
, (7)

The Gauss-Bonnet coupling ξ(ϕ) is required to be a function of a scalar field in
order to give nontrivial effects on the background dynamics.
Varying this action with respect to gµν and ϕ yields the Einstein and field
equation in a spatially flat Friedmann-Robertson-Walker universe

Rµν −
1

2
gµνR =

(
∂µϕ∂νϕ− 1

2
gµν(g

ρσ∂ρϕ∂σϕ+ 2V ) + TGB
µν

)
, (8)

�ϕ− Vϕ −
1

2
TGB = 0, (9)



TGB
µν =4(∂ρ∂σξRµρνσ −�ξRµν + 2∂ρ∂(µξR

ρ
ν)

−1

2
∂µ∂νξR)− 2(2∂ρ∂σξR

ρσ −�ξR)gµν , (10)

TGB =ξϕR
2
GB . (11)

The background Einstein and field equations yield

H2 =
1

3

(
1

2
ϕ̇2 + V + 12ξ̇H3

)
, (12)

Ḣ = −1

2

(
ϕ̇2 − 4ξ̈H2 − 4ξ̇H(2Ḣ − H2)

)
, (13)

ϕ̈+ 3Hϕ̇+ V,ϕ + 12ξ,ϕH
2
(
Ḣ + H2

)
= 0, (14)

The equation (14) is the result of the equations (12)–(13). When ξ = const we
have the standard inflation.



The method of exact solutions
The exact solutions for D > 4 (D. Chirkov , A. Toporensky ; A. Makarenko).
Earlier, inflation for a single scalar field with nonminimal coupling to the
Gauss-Bonnet term in 4-dimensional FRW universe was considered on the basis
of slow-roll approximation, only (Z. Guo, D. J. Schwarz; S. Koh et. al.).

H2 =
1

3

(
1

2
ϕ̇2 + V + 12ξ̇H3

)
, (15)

Ḣ = −1

2

(
ϕ̇2 − 4ξ̈H2 − 4ξ̇H(2Ḣ − H2)

)
(16)

Now, we define the connection between standard inflation and inflation with GB
correction

H = H(1− 2ξ̇H) (17)

When ξ = const, the equations (12)–(13) are reduced to (3)–(4) and H = H .



The equations (12)–(13), in this case, are written as

1

2
ϕ̇2 + V (ϕ) = −3H2 + 6HH (18)

1

2
ϕ̇2 = −Ḣ − HH + H2 (19)

In the case of ξ = const, H = H and equations (18)–(19) are reduced to (3)–(4).
Thus, H is the Hubble parameter for standard inflationary models.
Now, we write the equations (18)–(19) in the following form

V = −4H2 + 7HH + Ḣ (20)
1

2
ϕ̇2 = −Ḣ − HH + H2 (21)

Further, by selecting the Hubble parameter H = H(t) and the scalar field
ϕ = ϕ(t) we will generate the exact solutions of equations (20)–(21).



De Sitter expansion
The scale factor

a(t) = a0 exp (At) (22)

Consider the inflationary model with

H(t) = A (23)

ϕ(t) = B exp(−At), (24)

where A and B are the positive constants .
The exact solutions of the equations (20)–(21) and (17) are:

H(t) = AB2 exp(−2At) + A (25)

V (ϕ) = 5A2ϕ2 + 3A2 (26)

ξ(ϕ) =
ϕ2

4A2
(27)



Power-law inflation
We consider the inflationary model with

H(t) = B/t (28)

ϕ(t) = ±
√
B2 + A− AB ln(t) + ϕ0, (29)

where A, B are the positive constants.
The exact solutions of the equations (20)–(21) and (17) are:

H(t) = A/t (30)

V (ϕ) = (−4B2 + 7AB − A) exp(±2(ϕ− ϕ0)/C ) (31)

ξ(ϕ) =
B − A

4B2
exp(∓2(ϕ− ϕ0)/C ), (32)

where C =
√
B2 + A− AB .

Thus, we obtain H = αH , where α = A/B .



Double-well potential
Consider the inflationary model with

H(t) = C exp(−At), (33)

ϕ(t) = B exp

(
−A

2
t

)
(34)

The exact solutions of the equations (20)–(21) and (17) are:

H(t) = −1

4

A2B2

C
+ A+ C exp(−At) (35)

V (ϕ) =
1

4B2
ϕ2

(
12

C 2

B2
ϕ2 + 24AC − 7A2B2

)
(36)

ξ(ϕ) =
(AB2 − 4C )B4

16C 3
ϕ−4 (37)

Thus, we have H = H + β, where β = −1
4
A2B2

C
+ A.



Cosmological perturbations

During inflation, quantum fluctuations of the scalar field will create a metric
perturbation. In a linear order, for the case of standard inflation for Fourier modes
scalar vk and tensor uk perturbation, Mukhanov-Sasaki equations are written as
follows (V.F. Mukhanov, H.A. Feldman and R.H. Brandenberger)

d2vk
dη2

+

(
k2 − 1

z

d2z

dη2

)
vk = 0 (38)

d2uk
dη2

+

(
k2 − 1

a

d2a

dη2

)
uk = 0, (39)

where z = aϕ̇/H , k – wavenumber, η – conformal time.



The exact cosmological parameters at the crossing of the Hubble radius
(k = aH) (S. V. Chervon, I. V. Fomin)

r = −4
Ḣ

H
2 (40)

PR(k) = − H
4

8π2Ḣ
(41)

PG(k) =
H

2

2π2
(42)

nS(k)− 1 =
4Ḣ − H Ḧ

Ḣ

Ḣ + H
2

(43)

nG(k) =
2Ḣ

Ḣ + H
2

(44)



On the basis of the connection H = H(1− 2ξ̇H) one can calculate the exact
values of parameters of cosmological perturbations for inflation with GB
correction from this formulas.
For power-law inflation H = αH we have:

r =
4

αB
(45)

PS =
α3B3

8π2t2∗
(46)

PT =
α2B2

2π2t2∗
(47)

nS − 1 =
2

1− αB
(48)

nT =
2

1− αB
, (49)

where t∗ is the time of Hubble radius crossing.



For double-well potential H = H + β we have

r =
−4Ḣ

(H + β)2
(50)

PR(k) = −(H + β)4

8π2Ḣ
(51)

PG(k) =
(H + β)2

2π2
(52)

nS(k)− 1 =
4Ḣ − (H+β) Ḧ

Ḣ

Ḣ + (H + β)2
(53)

nG(k) =
2Ḣ

Ḣ + (H + β)2
(54)



The high-frequency gravitational waves
The amplitude of gravitational waves at the end of the inflation in the selected
unit system is defined as follows (V. Sahni, M. Sami and T. Souradeep)

h2GW =
H(t = ti)

4π2

The spectral energy density of gravitational waves

ΩMD
GW (f ) =

3

8π2
h2GWΩmq

(
fq
f

)
, fq ≤ f < fMD (55)

ΩRD
GW (f ) =

1

6π
h2GWΩrq, fMD ≤ f < fRD (56)

Ωkin
GW (f ) =

3

8π2
h2GWΩmq

(
f

fRD

)
, fRD ≤ f < fkin, (57)



where fq, fkin, fRD fMD – the frequencies of the gravitational waves at each stage
of evolution of the Universe

fq =
1

2
Hq (58)

fMD =
3

2π
fq

(
Ωmq

Ωrq

)1/2

(59)

fRD =
1

4
fq

(
Ωrq

Ωmq

)1/2
Trh

TMD
(60)

fkin = Hkin

(
Tq

Trh

)(
Hrh

Hkin

)1/3

(61)

Here Hq = 67.8± 0.9kms−1Mpc−1, Ωmq = 0.308± 0.012 and
Ωrq = (9.230± 0.022)× 10−5 are Hubble parameter, the density of matter and
radiation at the modern era, Trh = 1× 1014GeV and Hrh – reheating
temperature and Hubble parameter, that we take approximately same as the
temperature and Hubble parameter at the end of inflation.



The possibility of experimental detection of relic gravitational waves
To date, several projects of searching for gravitational waves, such as projects
LIGO (USA), VIRGO (Italy, France), TAMA-300 (Japan), GEO-600 (Germany)
and others, are realized.
One of the promising methods for increasing the sensitivity of gravitational
antennas in the high frequency part of the spectrum is the use of low-frequency
optical resonance phenomenon (LOR) in the Fabry-Perot interferometer (A.
Morozov)
Minimum detectable spectral density fluctuations of the space-time by using
low-frequency optical resonance in a Fabry-Perot interferometer can be estimated
by the formula

Gh (f ) >

√
2πκ

c2T∆

2π~f 3/2

keW0
(62)

where κ – phase shift that characterizes the setting of the interferometer , c –
the speed of light , T – time averaging of the spectral density , ∆ – loss per
cycle reflections , ke – wave number , W0 – power incident on the Fabry-Perot
interferometer monochromatic laser radiation , f - gravitational wave frequency.



To move to the value of the energy density of gravitational waves ΩGW (f ), one
can use the formula

ΩGW (f ) =
4π2

3H2
q

f 3Gh (f ) (63)

where Hq – the Hubble parameter. Substituting formula (62) in the expression
(63) gives an estimate for the minimum energy density of gravitational waves
that can be detected with the use of low-frequency optical resonance

ΩGW (f ) >

√
2πκ

c2T∆

8π3~f 9/2

3H2
qkeW0

(64)



ΩGW (f ) for various experiments and for the case of low-frequency optical
resonance with the following setup switches: κ = ∆, T = 107sec (116 a day),
ke = 5.9 · 106m−1 , (λe = 1.064µm), W0 = 104 W.


