MEASUREMENT OF CP-VIOLATION PARAMETERS IN DECAYS OF $B_s^0 \rightarrow J/\psi\phi$ with the ATLAS detector

Artem Maevskiy on behalf of the ATLAS Collaboration **Skobeltsyn Institute of Nuclear Physics** Lomonosov Moscow State University

ANALYSIS STRATEGY

$B_s^0 \rightarrow J/\psi(\mu^+\mu^-)\phi(K^+K^-)$ decay

Pseudo-scalar B_s decaying into vector-vector final state $\implies 3$ final states with L = 0, 1 or 2 + one more state with S-wave KK configuration. **Disentangled by angular analysis.** States with L = 0, 2 are CP-even, states with L = 1 and with S-wave *KK* system are CP-odd

Fitted variables:

- **Three transversity angles** disentangling CP-eigenstates
- **Invariant mass** signal/background separation
- **Proper decay time** information about Γ_s , $\Delta\Gamma_s$ and ϕ_s + signal/background separation

Unbinned maximum likelihood fit

 $\gg \Lambda_b^0 \rightarrow J/\psi p K - (1.8 \pm 0.6)\%$ w.r.t. the signal

CP-VIOLATION IN $B_s^0 \rightarrow J/\psi\phi$ DECAY

- B_s -meson is electrically neutral and can **mix** with its antiparticle, just like neutral kaons do
- $B_s \bar{B}_s$ mixing occurs due to weak flavour changing currents — through **loops with two** W bosons
- Hypothetical **new physics (NP)** particles **may** affect the dynamics of this mixing
- Since final state $(J/\psi\phi)$ is common for both B_s and \overline{B}_s there's **interference between decays** with and without mixing

> CP-violation occurs in this interference. It means that time-dependent decay probabilities are different for B_s and \overline{B}_s :

$$\Gamma^{\left[B^{0}_{s}(\to\bar{B}^{0}_{s})\to J/\psi\phi\right]}(t)\neq\Gamma^{\left[\bar{B}^{0}_{s}(\to\bar{B}^{0}_{s})\to J/\psi\phi\right]}(t)$$

- The amount of CP-violation is characterised by ϕ_s — weak phase difference between the mixing amplitude and $b \rightarrow c \overline{c} s$ decay amplitude
- In the Standard Model (SM) ϕ_s is estimated by combining beauty and kaon physics observables:

 $\phi_s = -0.0363^{+0.0015}_{-0.0016}$ rad

NP contributions may alter this value

 \triangleright Other parameters describing B_s mixing and decay are mass difference

$$\Delta m_s = m_{\rm H} - m_{\rm L},$$

decay width difference

$$\Delta \Gamma_s = \Gamma_{\rm L} - \Gamma_{\rm H},$$

and

$$\Gamma_s = \frac{\Gamma_{\rm L} + \Gamma_{\rm H}}{2}$$

- mean of the two decay widths ("L" and "H" stand for light and heavy mass eigenstates respectively).

FLAVOUR TAGGING

- Initial flavour is correlated with the charge of decay product (e/μ /jet)
- Measuring weighted sum of charges of tracks in a cone around an opposite-side e/μ /jet gives information about B_s^0 meson flavour
- Method calibrated with $B^+ \rightarrow$ $J/\psi K^+$ decays

Tagging power and efficiency

Efficiency – number of tagged candidates divided by total number of candidates.

Dilution — difference between tagging probabilities P(B|Q) and $P(\overline{B}|Q)$

Tagging power — efficiency times dilution squared

Tagger	Efficiency [%]	Dilution [%]	Tagging Power [%]		
Combined μ	4.12 ± 0.02	47.4 ± 0.2	0.92 ± 0.02		
Electron	1.19 ± 0.01	49.2 ± 0.3	0.29 ± 0.01		
Segment-tagged μ	1.20 ± 0.01	28.6 ± 0.2	0.10 ± 0.01		
Jet-charge	13.15 ± 0.03	11.85 ± 0.03	0.19 ± 0.01		
Total	19.66 ± 0.04	27.56 ± 0.06	1.49 ± 0.02		

FIT RESULTS (8 TEV DATA, 14.3 FB⁻¹)

RUN-1 COMBINED ATLAS RESULT

Alternative tagging probability fits for the	Tagging
calibration sample $R^+ \rightarrow I/\eta/K^+$ performed	Acceptance
canonation sample $B \to g/\psi R$ performed	Inner dete
	Backgrou
	Choice
Angular acceptance	Choice
	B_d° backgi
Alternative binning for angular	Λ_b backgr
accontance calculation	Fit model
acceptance calculation	Mass k
	Time r
N Tunon dataatan alianmant	Defaul
Inner detector alignment	
	Total
A possible bias on the impact parameter d_0	
was evaluated to be 0.14% in barrel and	
0.55% in endcap. These values were used	Ba Co
to modify do in alternative fits	
to mounty u_0 in anomative fits.	т

> Trigger efficiency

Flavour tagging

The uncertainty of trigger efficiency weights propagated to the main fit (effect found to be negligible)

Background angular model

Alternative $p_{\rm T}$ binning and alternative sideband mass regions taken to fit the background angular shapes

Systematic uncertainties

		ϕ_s	$\Delta \Gamma_s$	Γ_s	$ A_{\parallel}(0) ^2$	$ A_0(0) ^2$	$ A_S(0) ^2$	δ_{\perp}	δ_{\parallel}	$\delta_{\perp} - \delta_S$
		[rad]	$[ps^{-1}]$	$[ps^{-1}]$				[rad]	[rad]	[rad]
e	Tagging	0.025	0.003	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.001	0.236	0.014	0.004
he	Acceptance	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.003	$< 10^{-3}$	0.001	0.004	0.008	$< 10^{-3}$
zu	Inner detector alignment	0.005	$< 10^{-3}$	0.002	$< 10^{-3}$	$< 10^{-3}$	$< 10^{-3}$	0.134	0.007	$< 10^{-3}$
	Background angles model:									
	Choice of $p_{\rm T}$ bins	0.020	0.006	0.003	0.003	$< 10^{-3}$	0.008	0.004	0.006	0.008
	Choice of mass interval	0.008	0.001	0.001	$< 10^{-3}$	$< 10^{-3}$	0.002	0.021	0.005	0.003
	B_d^0 background model	0.023	0.001	$< 10^{-3}$	0.002	0.002	0.017	0.090	0.011	0.009
	Λ_b background model	0.011	0.002	0.001	0.001	0.007	0.009	0.045	0.006	0.007
	Fit model:									
	Mass signal model	0.004	$< 10^{-3}$	$< 10^{-3}$	0.002	$< 10^{-3}$	0.001	0.015	0.017	$< 10^{-3}$
	Mass background model	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.027	0.038	$< 10^{-3}$
	Time resolution model	0.003	$< 10^{-3}$	0.001	0.002	$< 10^{-3}$	0.002	0.057	0.011	0.001
	Default fit model	0.001	0.002	$< 10^{-3}$	0.002	$< 10^{-3}$	0.002	0.025	0.015	0.002
d_0	Total	0.042	0.007	0.004	0.006	0.007	0.022	0.30	0.05	0.01
<i>u</i> 0										

ontribution

Impact of the uncertainties of the fitted parameters taken into account (negligible effect) Alternative fit including $B_d \rightarrow J/\psi K\pi$ contribution performed

Fit model variations

Pseudo-experiments generated with alternate models are fitted with the default model

Λ_b contribution

Impact of the uncertainties of mass, angular and lifetime shapes as well as relative fraction and resonant *pK* invariant mass structure taken into account

Default fit model

Pseudo-experiments generated and fitted with the default model

▶ 14.3 fb⁻¹ from 8 TeV data

These results are published in: The ATLAS collaboration, Aad, G., et al. J. High Energ. Phys. (2016) 2016: 147. doi:10.1007/JHEP08(2016)147