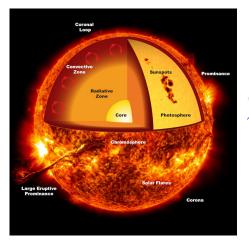
Methodology of experimental search for neutrinos from solar flares in Borexino detector

M. Toropova, V. Atroshchenko, L. Borodikhina

NRC Kurchatov Institute

ICPPA-2016 Moscow

Methodology of experimental search for neutrinos from solar flares in Borexino detector


Solar Flares

Solar flare is sudden variation in brightness near the Sun's surface

- The source of energy released in solar flare is restructuring magnetic fields
- Solar flares take place in active regions of Sun's surface (near the sunspots)
- Processes during solar flare involve all layers of solar atmosphere (photoshere, chromosphere and corona)

Solar Flares

X-rays:

- produced through bremsstrauhlung of accelerated electrons in chromospere and transit region
- give the starting time of the flare

$\gamma ext{-rays:}$

- produced by nuclear deexcitation, neutron capture, positron annihilation and pion decay
- may be delayed with respect to X-rays and then give the end time of the flare

Solar flares detection by satellites

RHESSI satellite

Low geocentric orbit

- RHESSI: X-ray and γ -ray
- Fermi: X-ray and γ -ray
- Hinode: optical, EUV, X-ray

Geosynchronous orbit

- GOES: X-ray
- SDO: EUV

Heliocentric orbit (L_1)

• WIND (Konus): hard X-ray and $\gamma\text{-ray}$

Solar flare neutrinos

Neutrinos in solar flares may possibly be born in the following processes:

$$p+p
ightarrow egin{cases} \Delta^{++}+n
ightarrow p+n+\pi^+\ \Delta^++p
ightarrow egin{cases} p+p+\pi^0\ p+n+\pi^+\ p+n+\pi^+ \end{cases}$$

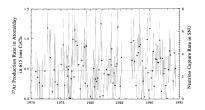
$$\pi^+ o \mu^+ + \nu_\mu$$

$$\mu^+ \rightarrow {\rm e}^+ + \nu_{\rm e} + \bar{\nu}_{\mu}$$

Relevance of solar flare neutrinos searches

Any result will give us more precise knowledge about solar flare mechanisms and updated information about:

- particle acceleration in flares
- flare process itself
- solar flare neutrinos flux and energy spectrum


Image: A matrix a

History of solar flare neutrinos searches

The Homestake experiment

- The detector 380 *m*³ tank of perchloroethylene. It was located in USA
- Main goal was to measure total flux of solar neutrinos with energies above 0.8 MeV

Solar flare neutrino search

 In 1988 the excess of detected neutrino events in correlation with the powerful solar flares in 1972 and 1981 was reported

History of solar flares neutrinos searches

Kamiokande experiment

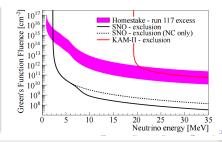
- Kamiokande is water Cherenkov detector that contained 3000 tons of pure warer + 1500 tons of water in veto. It was located in Japan
- Main goal was the search for proton decay

Solar flare neutrino search

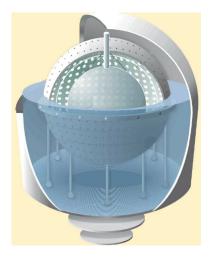
• No significant neutrino signal in correlation with solar flares was found in period from 1983 to 1988

イロト イポト イラト イラト

History of solar flares neutrinos searches



The SNO experiment


- SNO is one kton pure heavy water detector that was located in Canada
- Main goal was to study solar neutrino flux

Solar flare neutrino search

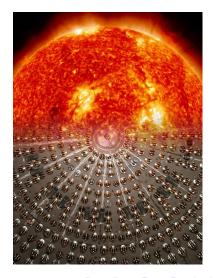
- No excess of neutrino events in time windows connected with solar flares was found
- Fluence upper limits for neutrinos from solar flares were obtained

Borexino detector

- Borexino is a 278 tons liquid organic scintillator neutrino detector placed in Italy
- The main goal is spectroscopy of solar neutrino below 1 MeV
- Secondary goals are studies of atmospheric and geo-neutrinos and also neutrinos from different astrophysical sources

(日)

Borexino advantages in solar flare neutrino searches


 Data taking period: from 2007 to nowadays.
 It covers more than a half of 11-year solar cycle including the maximum

of solar activity

• Two semi-independent data taking systems.

This allows us to extend energy region and to use some advanced software algorithms

• Opportunity to improve upper fluence limits for lower energies for electron neutrinos

Neutrino-electron scattering

 $\nu_x + e^- \rightarrow \nu_x + e^-$

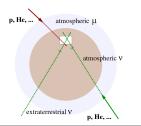
Signal in detector - single point-like event

Burst of events

Signal in detector - group of single events

- split a time scale to equal intervals
- multiplicity number of singles in one interval
- \bullet high multiplicities \rightarrow burst of single events

イロト イポト イヨト イヨト


Detection of solar flare neutrinos in Borexino

Reactions on carbon

$$\nu_e + {}^{12}C \rightarrow {}^{12}N + e^-$$

 ${}^{12}N \rightarrow {}^{12}C + e^+ + \nu_e$

Threshold energy $E_{th} = 17.8 \text{ MeV}$ Signal in detector - single event with energy above the threshold

Upward-going muons

Signal in detector - muons going from the ground

- high muon rate
- possibility to search for muon neutrinos from solar flares

Solar flares databases and correlation time window

- Combined database from several satellites (RHESSI, GOES, Hinode, Fermi) is used
- Only the most powerful solar flares (M and X classes) are used in analysis

- Time windows length depends on solar flare duration
- These windows contain periods before and after moment of solar flare registration
- Additional time windows for background rate calculation

- Main points of solar flares nature were stated
- Opportunities of neutrino emission during solar flares were considered
- History of searches for solar flare neutrinos on Earth were reviewed
- The search for neutrinos from solar flares is now in progress in Borexino collaboration
- We are looking for variations in detected neutrino signal correlated with the most powerful solar flares
- In case of abscence of any correlations fluence upper limit for solar flare neutrinos will be set

・ロト ・ 雪 ト ・ ヨ ト

Back-up slides

Methodology of experimental search for neutrinos from solar flares in Borexino detector

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ

Solar flares are classified according to the peak flux of 100 to 800 picometre X-rays near Earth.

Class	Flux (W/m^2)
A	$< 10^{-7}$
В	$10^{-7} - 10^{-6}$
C	$10^{-6} - 10^{-5}$
М	$10^{-5} - 10^{-4}$
X	$> 10^{-4}$

・ロト ・ 同ト ・ ヨト ・ ヨト ・ ヨ