Partially monochromatic modulated neutrino beams

A. L. Barabanov^{1,2}, O. A. Titov¹

¹National Research Centre "Kurchatov Institute"

²Moscow Institute of Physics and Technology

ICPPA-2016

Neutrino beams	Hyperfine effect	EC-beam intensity	Modulated EC-beams	Nuclei selection	Summary
Outline					

1 Neutrino beams

- 2 Hyperfine effect
- 3 EC-beam intensity
- Modulated EC-beams
- 5 Nuclei selection

Neutrino beam applications	Neutrino beams	Hyperfine effect	EC-beam intensity	Modulated EC-beams	Nuclei selection	Summary
	Neutrino be	eam applicati	ons			

Problems

- Oscillation experiments
- Search for neutrino magnetic moment
- Refining of the weak interaction constants
- Coherent scattering off nuclei
- ${\scriptstyle \bullet}$ Elastic/inelastic scattering of ν on nucleons and nuclei

Requirements

- $\bullet \ \nu$ of single flavor
- Precise knoweledge of spectrum
- Precise knoweledge of intensity

Neutrino beams	EC-beam intensity	Modulated EC-beams	
eta-beams			

The idea of β -beams (P. Zucchelli, Phys.Lett.B, 2002)

Source β -radioactive nuclei/ions in a storage ring High $\gamma \Rightarrow$ neutrinos are emitted within angle $\theta \simeq 1/\gamma \Rightarrow$ beam collimation Neutrino energy (in lab frame) $E_{\nu} \simeq 2\gamma E_{\nu}^{0} \gg E_{\nu}^{0}$

e-capture beams (J. Sato, Phys.Rev.Lett. 95, 2005; J. Bernabeu et al., JHEP, 2005)

Source: ions with electron-capturing nuclei Neutrinos are monochromatic in the ion rest frame \Rightarrow if $\gamma\gg1$ one obtains a monochromatic beam in lab frame

<i>B</i> -beams		

Scheme of a β -beam facility (*C.Volpe*, *J.Phys.G*, 2007)

Total angular momentum conservation

$$F = J \pm 1/2 = J' \pm 1/2$$

For Gamow–Teller transition $J' = J \pm 1$:

$$J' = J - 1 \Rightarrow$$
 decay occurs from $F = J - 1/2$
 $J' = J + 1 \Rightarrow$ decay occurs from $F = J + 1/2$

Neutrino beams	Hyperfine effect	EC-beam intensity	Modulated EC-beams	Nuclei selection	Summary
EC-heam i	intensity				

Consider a "maximal" cylindrical detector of radius $R=L/\gamma$ and height /

Number of events (per time unit) is

$$N_{event} = \frac{0.7 \cdot \eta \cdot N_{ions} \cdot \rho \cdot I \cdot E_{\nu}^{0} (\text{GeV}) \cdot 10^{-38} \text{ cm}^{2}}{\tau m_{0}},$$

 η is the monochromaticity, E_{ν}^{0} is the neutrino energy in the rest frame, τ is the ion lifetime, m_{0} the is atomic mass unit Estimates:

- Number of ions in a storage ring $N_{ions} \sim 10^{11}$
- Density $ho \simeq 1 {\rm ~g/cm^3}$
- I $\simeq 10$ m

Number of events per year

$$N_{e}^{y} \simeq 1 \cdot 10^{7} \cdot rac{\eta E_{
u}^{0}(\text{GeV})}{ au(s)}$$

	Hyperfine effect	EC-beam intensity	Modulated EC-beams	Nuclei selection	
Modulated	monochroma	atic neutrino be	eams		

Requirements for nuclei:

- Spin/parity: $J \neq 0, \ J' = J \pm 1, \ \pi' = \pi$
- eta^+ decay is suppressed, $Q \lesssim 2 m_e c^2$
- $\bullet\,$ Transition to only one state of daughter nucleus 98-100%
- Half-life 2 s < $T_{1/2} \lesssim 10^{6}$ s $\simeq 11.6$ d.

Properties of selected nuclei

^A ZX	J^{π}	T _{1/2}	$z^{A}_{-1}X'$	$J^{\prime\pi}$	<i>E′</i> , keV	<i>Q_{EC}</i> , keV	P, %
⁷¹ ₃₂ Ge	1/2 -	11.4 d	$^{71}_{31}{ m Ga}$	3/2 -	0	232.6	100
¹⁰⁷ ₄₈ Cd	5/2+	6.5 h	¹⁰⁷ ₄₇ Ag*	7/2+	93.1	1323.2	99.7
¹¹⁸ <i>m</i> ₅₁ Sb	8 -	5.0 h	$^{118}_{50}$ Sn*	7 -	2574.8	1332	98.3
¹¹⁹ ₅₁ Sb	5/2+	38.2 h	¹¹⁸ ₅₀ Sn	3/2+	23.9	590.8	100
¹³¹ ₅₅ Cs	5/2+	9.7 d	¹³¹ ₅₄ Xe	3/2+	0	354.8	100
¹³⁵ ₅₇ La	5/2+	19.5 h	¹³⁵ ₅₆ Ba	3/2+	0	1207	98.1
¹⁶³ ₆₈ Er	5/2 -	75 m	¹⁶³ ₆₇ Ho	7/2 -	0	1211	99.9
¹⁶⁵ ₆₈ Er	5/2 -	10.4 h	¹⁶⁵ ₆₇ Ho	7/2 -	0	378	100

	Hyperfine effect	EC-beam intensity	Modulated EC-beams	Nuclei selection	
Properties	of ions				

$^{A}_{Z}X$	$J^{\pi} ightarrow J'^{\pi}$	μ/μ_N	Туре	$ \Delta_{HF} $, eV	$\lambda_{\it HF},\mu{ m m}$	$ au_{{\it HF}},{ m s}$
⁷¹ ₃₂ Ge	$1/2 \xrightarrow{-} 3/2 \xrightarrow{-}$	+0.55	F	0.041	30.2	1024
¹⁰⁷ ₄₈ Cd	$5/2^+ \rightarrow 7/2^+$	-0.615	A	0.105	11.8	26.3
¹¹⁸ <i>m</i> ₅₁ Sb	$8^- \rightarrow 7^-$	2.32		0.433	2.86	0.46+, 0.41-
¹¹⁹ ₅₁ Sb	$5/2^+ \rightarrow 3/2^+$	+3.45	A	0.725	1.71	0.11
¹³¹ ₅₅ Cs	$5/2^+ \rightarrow 3/2^+$	+3.54	A	0.973	1.27	0.046
¹³⁵ ₅₇ La	$5/2^+ \rightarrow 3/2^+$	+3.70	A	1.162	1.06	0.027
¹⁶³ ₆₈ Er	$5/2 \xrightarrow{-} 7/2 \xrightarrow{-}$	+0.56	F	0.346	3.58	1.03
¹⁶⁵ ₆₈ Er	$5/2^- \rightarrow 7/2^-$	+0.64	F	0.399	3.10	0.67

Intense β -beams with modulation

Requirements for nuclei:

- Spin/parity: $J \neq 0, J' = J \pm 1, \pi' = \pi$
- Half-life 1 s $< T_{1/2} \lesssim$ 30 s
- EC branching $\geq 1\%$

•
$$lpha=\eta(\%) E^0_
u(\textit{keV})/T_{1/2}(s)\geq 10^3$$

Properties of selected nuclei

Nuclear properties

$A_Z X$	<i>T</i> _{1/2} , s	μ/μ_N	$J^{\pi} ightarrow J'^{\pi'}$	E', keV	Q, keV	η, %	$\alpha = \frac{\eta E_{\nu}^0}{T_{1/2}}$
¹⁴⁰ ₆₃ Eu	1.51	+1.37	$1^+ ightarrow 0^+$	0	8470	3.1	17400
¹⁴⁰ ₆₃ Eu			$1^+ ightarrow 2^+$	531	7940	1.1	5780
¹⁴⁰ ₆₃ Eu			$1^+ ightarrow 2^+$	1600	6870	0.29	1320
¹⁴² ₆₃ Eu	2.34	+1.54	$1^+ ightarrow 0^+$	0	7670	5.12	16800
¹⁴⁴ ₆₃ Eu	10.2	+1.89	$1^+ ightarrow 0^+$	0	6320	9.75	6040

Ion properties

$A_Z X$	μ/μ_N	$J^{\pi} ightarrow J'^{\pi}$	<i>E</i> ′, keV	Туре	$ \Delta_{HF} $, eV	$\lambda_{HF}, \mu m$	$ au_{HF},~{ m s}$
¹⁴⁰ ₆₃ Eu	+1.37	$1^+ ightarrow 0^+$	0	A	0.522	2.38	0.375
¹⁴⁰ ₆₃ Eu	+1.37	$1^+ ightarrow 2^+$	531	F	0.522	2.38	0.375
¹⁴⁰ ₆₃ Eu	+1.37	$1^+ ightarrow 2^+$	1600	F	0.522	2.38	0.375
¹⁴² ₆₃ Eu	+1.54	$1^+ ightarrow 0^+$	0	A	0.586	2.12	0.264
¹⁴⁴ ₆₃ Eu	+1.89	$1^+ ightarrow 0^+$	0	A	0.720	1.72	0.143

Neutrino beams I	Hyperfine effect	EC-beam intensity	Modulated EC-beams	Nuclei selection	Summary
Summany					

Results

- Idea of modulated EC-beam is discussed
- Intensity of EC-beams is estimated
- Sources for entirely monochromatic modulated EC-beams are selected
- Sources for intense modulated partially monochromatic beams are selected

Hyperfine effect	EC-beam intensity	Modulated EC-beams	Summary

Thank you!