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Horndeski theory

In 1974, Horndeski derived the action of the most general scalar-tensor
theories with second-order equations of motion
[G.Horndeski, Second-Order Scalar-Tensor Field Equations in a

Four-Dimensional Space, IJTP 10, 363 (1974)]

Horndeski Lagrangian:

LH =
p�g (L2 + L3 + L4 + L5)

L2=G2(X;�) ;

L3=G3(X;�)�� ;

L4=G4(X;�)R+ @XG4(X;�) �
��
�� r�

��r�
�� ;

L5=G5(X;�)G��r���� 1
6 @XG5(X;�) �

���
��
 r�

��r�
��r


�� ;

where X = � 1
2 (r�)2, and Gk(X;�) are arbitrary functions,

and ����� = 2! ��[��
�

�], ������� = 3! ��[��
�
��

�
�]
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Fab Four subclass of the Horndeski theory

There is a special subclass of the theory, sometimes called Fab Four (F4),
for which the coe�cients are chosen such that the Lagrangian becomes

LF4 =
p�g (LJ + LP + LG + LR � 2�)

with

LJ=VJ(�)G��r��r�� ;

LP=VP (�)P����r��r��r��� ;

LG=VG(�)R ;
LR=VR(�) (R����R���� � 4R��R

�� +R2):

Here the double dual of the Riemann tensor is

P��
�� = �1

4
���
����� R

��

� = �R���� + 2R�[��

�
�] � 2R�[��

�

�] �R��[����] ;

whose contraction is the Einstein tensor, P��
�� = G�

� .
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Fab Four subclass of the Horndeski theory

Fab Four Lagrangian:

LF4 =
p�g (LJ + LP + LG + LR � 2�)

The Fab Four model is distinguished by the screening property { it is
the most general subclass of the Horndeski theory in which 
at
space is a solution, despite the presence of the cosmological term �.

This property suggests that � is actually irrelevant and hence there
is no need to explain its value.

Indeed, however large � is, Minkowski space is always a solution and
so one may hope that a slowly accelerating universe will be a
solution as well.
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The model with nonminimal kinetic coupling

Action of the theory with nonminimal kinetic coupling:

S =
1

2

Z �
M2

PlR� (�G�� + " g��)r��r��� 2�
�p�g d4x+ Sm

The gravitational equations:

M2
PlG�� + �g�� = � T�� + " T (�)

�� + T (m)
�� ;

with

T��=P����r
��r��+

1

2
g�� �

���
��� r

�
��r

�
���XG�� ;

T
(�)
�� =r��r��+Xg�� ;

T
(m)
�� =(�+ p)U�U� + pg�� ;

The scalar equation

r�((�G
�� + "g��)r��) = 0 :
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Cosmological models

The FLRW ansatz for the metric:

ds2 = �dt2 + a2(t)

�
dr2

1�Kr2 + r2(d#2 + sin2 #d'2)

�
;

a(t) cosmological factor, H = _a=a Hubble parameter

Gravitational equations:

�3M2
Pl

�
H

2 +
K

a2

�
+

1

2
" 

2
�

3

2
� 

2

�
3H2 +

K

a2

�
+ �+ � = 0;

�M
2
Pl

�
2 _H + 3H2 +

K

a2

�
�

1

2
" 

2
� � 

2

�
_H +

3

2
H

2
�
K

a2
+ 2H

_ 

 

�
+ �� p = 0:

The scalar �eld equation:

1

a3
d

dt

�
a3
�
3�

�
H

2 +
K

a2

�
� "

�
 

�
= 0;

where  = _�, and � = �(t) is a homogeneous scalar �eld
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Cosmological models

The �rst integral of the scalar �eld equation:

a3
�
3�

�
H2 +

K

a2

�
� "

�
 = C;

where C is the Noether charge associated with the shift symmetry
�! �+ �0.

Let C = 0. One �nds in this case two di�erent solutions:

GR branch:  = 0 =) H2 +
K

a2
=

�+ �

3M2
Pl

Screening branch: H2 +
K

a2
=

"

3�
=)  2 =

� (� + �)� "M2
Pl

� ("� 3�K=a2)

NOTICE: The role of the cosmological constant in the screening solution
is played by "=3� while the �-term is screened and makes no
contribution to the universe acceleration.

Note also that the matter density � is screened in the same sense.
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Cosmological models

Let C 6= 0, then

 =
C

a3
�
3� (H2 + K

a2 )� "
� ;

and the modi�ed Friedmann equation reads

3M2
Pl

�
H2 +

K

a2

�
=
C2

�
"� 3�

�
3H2 + K

a2

��
2a6

�
"� 3� (H2 + K

a2 )
�2 + �+ �:

Introducing dimensionless values and density parameters

H
2 = H

2
0 y; a = a0 a ; �cr = 3M2

PlH
2
0 ; � =

"

3�H2
0

;


0 =
�

�cr
; 
2 = �

K

H2
0a

2
0

; 
6 =
C2

6� a60H
2
0 �cr

; � = �cr

�

4

a4
+


3

a3

�

gives

the master equation:

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6

�
� � y + 
2

a2

�2
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Asymptotical behavior: Late time limit a!1

GR branch:

y = 
0 +

2

a2
+


3

a3
+


4

a4
+

(� � 3
0) 
6

( 
0 � �)2 a6 +O
�

1

a7

�
=) H2 ! �=3

Notice: The GR solution is stable (no ghost) if and only if � > 
0.

Screening branches:

y� = � +

2

a2
� �

( 
0 � �) a3 �

2
6

�a5
� 
6(� � 3
0)� 
3�

2(
0 � �)2 a6 +O
�

1

a7

�

=) H2 ! "=3�

Notice: The screening solutions are stable (no ghost) if and only if
0 < � < 
0.
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Asymptotical behavior: The limit a! 0

GR branch:

y =

4

a4
+


3

a3
+


2
4 � 3
6


4a2
+

3
3
6


4a
+O(1)

Notice: The GR solution is unstable

Screening branch:

y+=
3
6


4 a2
� 3
3
6


2
4 a

+
5

3
� +

3
6

2
3 + 9
2

6


3
4

+O(a);

y�=
�

3
+

4 �2

27 
6

�

4 a

2 +
3 a
3
�
+O(a4)

Notice: Both screening solutions are stable
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�

�

��
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Global behavior

y = 
0 +

2

a2
+


3

a3
+


4

a4
+


6

�
� � 3y + 
2

a2

�
a6
�
� � y + 
2

a2

�2

�

�

�
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Solutions y(a) for 
0 = 
6 = 1, 
3 = 5, 
4 = 0, � = 0:2. One has 
2 = 0.
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Conclusions

The theory with nonminimal kinetic coupling admits various
cosmological solutions.

Ghost-free solutions exist if � � 0 and " � 0.

The no-ghost conditions eliminate many solutions, as for example
the bounces or the \emerging time" solutions.

For � > 
0 there exists a ghost-free solution. It describes a universe
with the standard late time dynamic dominated by the �-term,
radiation and dust. At early times the matter e�ects are totally
screened and the universe expands with a constant Hubble rate
determined by "=�. Since it contains two independent parameters �
and 
0 � � in the asymptotics, this solution can have an hierarchy
between the Hubble scales at the early and late times. However, at
late times it is not screening and dominated by �, thus invoking
again the cosmological constant problem.
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Conclusions

For 0 < � < 
0 there exist two ghost-free solutions, A and B. The
solution A is sourced by the scalar �eld, with or without the matter,
while the solution B exists only when the matter is present. They
both show the screening because their late time behaviour is
controlled by � � "=� and not by �. Therefore, they could in
principle describe the late time acceleration while circumventing the
cosmological constant problem, and one might probably �nd
arguments justifying that "=� should be small. At the same time,
these solutions cannot describe the early in
ationary phase. Indeed,
the near singularity behaviour of the solution B does not correspond
to in
ation, while the solution A does show an in
ationary phase,
but with essentially the same Hubble rate as at late times, hence
there is no hierarchy between the two Hubble scales.
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