Search for dark matter with the ATLAS detector at the LHC

Anna Shcherbakova (Stockholm University)

on behalf of the ATLAS collaboration

The 2nd international conference on particle physics and astrophysics

ICPPA, Moscow

October 10^{th} , 2016

Introduction

Dark matter (DM) searches:

- direct detection (scattering of DM on atomic nuclei in the detector)
- indirect detection (annihilation/decay of DM into the Standard model (SM) particles)
- production and detection **at particle accelerators** (annihilation of SM into DM particles)

Introduction

- DM can not be directly observed in ATLAS (does not interact with the detector)
- production of DM pairs can be identified via presence of an imbalance in transverse momenta ("missing energy") in the plane transverse to the beam line $E_T^{\text{miss}} = |-\sum \vec{E_T}^{\text{visible}}|$
- Hermetic calorimetric coverage of the ATLAS detector provides a good measurement of E_T^{miss} .
- Consider signatures with radiation of extra particles

Introduction

- Mono-X (DM recoiling against X) Generic experimental signature: $pp \rightarrow E_T^{\text{miss}} + X$, where $X = \text{jet}, \gamma, W/Z$ (\rightarrow lep/jets), t/b or H
- Associate Production

• Search for mediators (dijet resonance)

Many DM searches in ATLAS, this talk does not aim to cover them all.

Approaches

Complete models (e.g. SUSY):

- + Give more specific predictions
- Less general approach
- Large number of free parameters

Effective field theories (EFTs): arXiv:1008.1783

Extensively used in Run-I

DM and SM particle interaction is described by the effective operators. Parameters: m_{χ} and M^* .

+ More generic

– Valid only for low momentum transfer $Q^2_{\rm tr} << M^2_{\rm med} = M^* g_\chi g_q.$

Simplified models: arxiv:1506.03116

Commonly used in Run-II. DM and SM particles interact via a mediator.

- + Cover features of a class of models and stay valid at high energies.
- + Described by a small number of free parameters (e.g. $M_{
 m med}, m_\chi, g_{
 m SM}, g_{
 m DM}$)

Simplified model

LHC DM forum report: arxiv:1507.00966 Results presentation: arxiv:1603.04156

Mono-jet search

Phys. Rev. D 94, 032005

- Requires large E_T^{miss} and at least 1 high p_T jet
- signal regions (SR) inclusive and exclusive in $E_T^{\rm miss}$
- dominant backgrounds: $Z(\nu\bar{\nu})$ +jets, $W(l\bar{\nu})$ +jets
- results interpreted with an axial vector mediator model; Dirac fermion DM
- parameters: m_{χ} , m_A , coupling g_{χ} and flavor-universal coupling to quarks g_q .

6 / 18

Mono-photon search

ATI 49

5=13 TeV 32 fb

Signal Region

DM150

 $\rightarrow ly h$ ake Photons

° Se<

- Large E_T^{miss} and high- p_T photon, minimal extra jet activity, no lepton
- Dominant background $Z(\rightarrow \nu \bar{\nu}) + \gamma$, where γ due to initial-state radiation
- strength of the EFT interaction is controlled by M_* , for simplified models limits are set on the signal strength μ

Mono-V(hadronic) search

JHEP 01 (2016) 172

Mono-Higgs search

• $E_T^{\text{miss}} + h, h \to b\bar{b}$

- small- and large-R jets exploited depending on E_T^{miss}
- shape-fit of the invariant dijet mass or mass of large-R jet
- dominant backgrounds: SM W/Z+ jets, $t\bar{t}$

ATLAS-CONF-2016-019

750

700

650

600 550

600

700 800 900

1100 1200 1300 1400

m₂ [GeV]

1000

$DM+t\bar{t}$

Interaction between quark and scalar Dirac DM: $\frac{m_q}{M_*^3} \bar{q}q\bar{\chi}\chi \Rightarrow$ coupling to the heavy quarks is stronger \Rightarrow larger sensitivity

- Interpretation of SUSY search to the simplified model with Dirac fermion DM and scalar/pseudo-scalar mediator
- Three searches: hadronic, semi-leptonic and di-leptonic decays of the top quarks:

2 lep: ATLAS-CONF-2016-076

$DM+t\bar{t}$, 1L

- $pp \to t\bar{t}\chi\bar{\chi}$, $t\bar{t} \to bW(q\bar{q})bW(l\bar{\nu})$
- Excess of 3.3 σ observed in DM_low
- Mild deviation of 2.6 σ is found in bC2x_diag
- Dominant backgrounds: $t\bar{t}$, single top Wt, $t\bar{t} + Z(\rightarrow \nu \bar{\nu})$, and W+jets

• Main discriminating variables: E_T^{miss} , m_T , amT2, topness

Comparison to direct searches and summary

- The LHC is sensitive to DM production in association with additional particles.
- Many DM searches are carried out in ATLAS (under assumption of SUSY, EFT, simplified models, etc.).
- Observed data are consistent with SM predictions \Rightarrow limits are set.
- Results of the ATLAS searches complement the direct searches constraints.

Thank you!

backups

$Higgs \rightarrow invisible$

- invisible decays of a Higgs boson produced via the vector-boson fusion (VBF) process.
- signature: 2 jets and large E_T^{miss}
- measure BR(Higgs → invisible) if kinematically allowed (m_χ < m_H/2)
- results are interpreted in the Higgs-portal DM model; upper bounds on the DM-nucleon scattering cross section

other DM searches at ATLAS

$DM+Z(\rightarrow ll)$ (at $\sqrt{s}=8$ TeV)	arxiv:1404.0051v3	
$DM + H(\to \gamma\gamma)$	ATLAS-CONF-2016-087	
$DM + H(\to ZZ^* \to l^+ l^- l'^+ l'^-)$	ATLAS-CONF-2015-059	
DM+bb	ATLAS-CONF-2016-086	

$DM+t\bar{t}$, 1L, SRs

ATLAS-CONF-2016-050

Variable	SR1	tN_high			
Number of (jets, b-tags)	$(\ge 4, \ge 1)$	$(\geq 4, \geq 1)$			
Jet $p_T > [GeV]$	(80 50 40 40)	(120 80 50 25)			
E_{T}^{miss} [GeV]	> 260	> 450			
$E_{T,\perp}^{\text{miss}}$ [GeV]	-	> 180			
$H_{ m T,sig}^{ m miss}$	> 14	> 22	Variable	DM_low	DM_high
m_T [GeV]	> 170	> 210	Number of (jets, b-tags)	$(\geq 4, \geq 1)$	$(\geq 4, \geq 1)$
am_{T2} [GeV]	> 175	> 175	Jet $p_T > [GeV]$	(60 60 40 25)	(50 50 50 25)
topness	> 6.5	-	E_{T}^{miss} [GeV]	> 300	> 330
m_{top}^{χ} [GeV]	< 270	-	$H_{T,sig}^{miss}$	> 14	> 9.5
$\Delta R(b, \ell)$	< 3.0	< 2.4	$m_{\rm T}$ [GeV]	> 120	> 220
Leading large-R jet p_T [GeV]	-	> 290	am _{T2} [GeV]	> 140	> 170
Leading large-R jet mass [GeV]	-	> 70	$\min(\Delta\phi(\vec{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathrm{jet}_i)) \ (i \in \{1-4\})$	> 1.4	> 0.8
$\Delta \phi(\vec{p}_{T}^{miss}, 2^{nd} large-R jet)$	-	> 0.6	$\Delta \phi(\vec{p}_{T}^{miss}, \ell)$	> 0.8	-
Variable		bC2x_diag	bC2x_med	bCbv	
Number of (jets, <i>b</i> -tags)		$(\geq 4, \geq 2)$	$(\geq 4, \geq 2)$	$(\geq 2, = 0)$	
Jet $p_{\rm T} > [{\rm GeV}]$		$(70 \ 60 \ 55 \ 25)$	$(170 \ 110 \ 25 \ 25)$	$(120 \ 80)$	
b-tagged jet $p_{\rm T} > [{\rm GeV}]$		$(25 \ 25)$	$(105 \ 100)$	-	
$E_{\rm T}^{\rm miss}$ [GeV]		> 230	> 210	> 360	
$H_{\mathrm{T,sig}}^{\mathrm{miss}}$		> 14	> 7	> 16	
$m_{\rm T} {\rm [GeV]}$		> 170	> 140	> 200	
am_{T2} [GeV]		> 170	> 210	-	
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=1) $		> 1.2	> 1.0	> 2.0	
$ \Delta \phi(\text{jet}_i, \vec{p}_{\text{T}}^{\text{miss}}) (i=2)$		> 0.8	> 0.8 > 0.8		
Leading large-R jet mass [GeV] –		-	-	[70, 10]	00]
$\Delta \phi(ec{p}_{ ext{T}}^{ ext{miss}},\ell)$		-	-	> 1.	2