Transverse momentum spectra and nuclear modification factors of charged particles at $\sqrt{s_{NN}} = 5.02$ TeV measured by ALICE at the LHC

 $Patrick \ Huhn \ \ {\rm for \ the \ ALICE \ Collaboration}$

Goethe University Frankfurt, Germany

2nd ICPPA - Moscow 2016 13. October

Comparing pp and AA collisions $\sigma(h) = PDF(x_1, Q^2) \otimes PDF(x_2, Q^2) \otimes \sigma(x_1, x_2, Q^2) \otimes FF(z_h, Q^2)$

- Initial hard collisions of partons
- Production cross section: pQCD
- Hadronisation

 $\sigma(h) = \mathsf{PDF}_{\mathcal{A}}(x_1, Q^2) \otimes \mathsf{PDF}_{\mathcal{A}}(x_2, Q^2) \otimes \sigma(x_1, x_2, Q^2) \otimes \mathsf{P}(\Delta \mathcal{E}, Q^2) \otimes \mathsf{FF}(z_h, Q^2)$

- Interaction with medium (QGP) Parton energy loss / jet quenching
- Idea suggested by Bjorken in 1982

J. D. Bjorken, FERMILAB-PUB-82-059-THY, FERMILAB-PUB-82-059-T.

The Nuclear Modification Factor: R_{AA}

$$\mathsf{R}_{\mathsf{A}\mathsf{A}}\left(p_{\mathsf{T}}\right) = \frac{1}{\langle \mathsf{T}_{\mathsf{A}\mathsf{A}} \rangle} \frac{d\mathsf{N}_{\mathsf{A}\mathsf{A}}/dp_{\mathsf{T}}}{d\sigma_{\mathsf{P}\mathsf{P}}/dp_{\mathsf{T}}}$$

Scenario I

- R_{AA} is a comparison of nucleus nucleus (AA) ^{yie} collisions to proton proton (pp) collisions
- Scaling factor determined by Glauber Monte-Carlo calculations $\langle T_{AA} \rangle = \langle N_{coll} \rangle / \sigma_{inel}^{NN}$
- $\bullet~\langle N_{coll} \rangle$ depends strongly on centrality
- If R_{AA} < 1, two scenarios possible: suppressed production or parton energy loss

The Nuclear Modification Factor: $\mathsf{R}_{\mathsf{A}\mathsf{A}}$

Phys.Lett.B720(2013) 52-62 — arXiv: 1208.2711

Charged Particles

• R_{AA} shows a clear centrality dependence:

Central collisions:

Strong suppression

Peripheral collisions:

Less suppression

- Suppression also observed for identified hadrons (e.g. strange or charm)
- $\langle N_{coll} \rangle$ scaling feasible?

The Nuclear Modification Factors: R_{AA} and R_{pPb}

Int. J. Mod. Phys. A 29 (2014) 1430047

• $\langle N_{coll} \rangle$ scaling reliable

• High
$$p_{\rm T}$$
: R_{pPb} ~ 1
 \rightarrow no modification

• No modification for γ, W^{\pm}, Z^{0}

• Energy increase in Pb–Pb to $\sqrt{s_{NN}} = 5.02 \text{ TeV}$: Larger / hotter medium? $\frac{dN_{ch}}{d\eta}(5.02 \text{ TeV}) = 1.2 \frac{dN_{ch}}{d\eta}(2.76 \text{ TeV})$ Phys.Rev.Lett. 116 (2016) – arXiv: 1512.06104

ALICE

Tracking:

ITS Inner Tracking System TPC Time Projection Chamber TRD Transition Radiation Detector Centrality & trigger:

V0A (2.8 > η > 5.1) V0C (-3.7 > η > -1.7)

 $p_{\rm T}$ - spectra measurement:

$$\begin{split} \eta &= -\ln\left[\tan\left(\frac{\theta}{2}\right)\right] \\ |\eta| &< 0.8 \\ p_{\mathsf{T}} &> 0.15\,\mathsf{GeV}/c \\ |z_{vtx}| &\leq 10\,\mathsf{cm} \end{split}$$

Analysis

	рр	Pb–Pb
Events	$25\cdot 10^6$	3.3 · 10 ⁶
	(25% of tot. stat.)	(3% of tot. stat.)
Rate	11.5 - 13.5 kHz	25 - 480 Hz
MC	PYTHIA8 & GEANT3	HIJING & GEANT3

Complete data sets are reconstructed and beeing analysed

Analysis

Primary particles:

All prompt particles including decay products of short lived strong and electromagnetic decays, but excluding decay products of weakly decaying particles ($c\tau > 1 \text{ mm}$).

Track selection:

optimized to select primary charged particles particles at high $p_{\rm T}$

Corrections: Tracking efficiency:	$\sim 70\%$
(data driven MC tuning performed) Contamination with secondaries:	$\sim 10\%$ at $p_{\rm T} < 0.2~{\rm GeV}/{\it c}, < 2\%$ at $p_{\rm T} > 1~{\rm GeV}/{\it c}$
(material & weak decays) p_{T} - resolution:	(important at low $_{\rm PT}$) $\sim 2\%$ at $p_{\rm T}<0.3~{\rm GeV}/c$ and $p_{\rm T}>15~{\rm GeV}/c$ (important at high $_{\rm PT}$)

Particle Composition Correction

- Monte Carlo generators have different particle compositions than measured in data
- Particle species dependent efficiencies reweighed based on relative abundances measured in pp@7 TeV, Pb–Pb@2.76 TeV
- Largest effect for production of strange hyperons

ALICE Collaboration, Eur. Phys. J. C 75 (2015)

Systematic Uncertainties

Source of Uncertainty (%)	рр	Pb–Pb 0-5%	Pb–Pb 60-80%
Event selection (Z_v)	0.5	0.2	0.19
Track cuts	1.8 - 6.5	1 - 2.9	0.5 - 1
Secondary particles	1.8 - 1.2	5 - negl.	2 - negl.
Particle composition	0.1 - 0.4	0.5 - 5.9	0.5 - 3
Matching efficiency	1.4 - negl.	2.5 - negl.	2 - 3.5
Trigger and vertex biases	1.2 - negl.	-	-
$p_{\rm T}$ resolution	0 - 1.4	negl.	0.3
Material budget	1.5 - 0.2	1.5 - 0.2	1.5 - 0.2
Anchor point (centrality det.)	-	negl.	3
Total p_{T} dependent:	3.3 - 7	2 - 6	4 - 5.5
Run I uncertainties:	6.4 - 8	8.2 - 13.4	10.3 - 13.4

Improved systematic uncertainties compared to previous analyses

Spectrum in pp Collisions

- Spectra measured for $0.15\,{\rm GeV}/c < p_{\rm T} < 40\,{\rm GeV}/c$
- Discrepancy between models and measurement up to 20 %

(EPOS LHC: CRMC package version 1.5.3 Phys. Rev. C 92 (2015) no.3, 034906)

(PYTHIA 8: Version 8.210 Comput. Phys. Commun. 191 (2015) 159)

ALI-PREL-107292

Spectra in Pb–Pb Collisions

• Spectra measured for $0.15\,{\rm GeV}/c < p_{\rm T} < 40\,{\rm GeV}/c$

Centrality	$\langle T_{AA} \rangle (1/mb)$	
0-5%	26.27 ± 0.93	
5-10%	20.48 ± 0.74	
10-20%	14.30 ± 0.46	
20-40%	6.76 ± 0.27	
40-60%	1.95 ± 0.1	
60-80%	0.40 ± 0.032	

$$\langle T_{AA} \rangle = \langle N_{coll} \rangle / \sigma_{inel}^{NN}$$

 $\sigma_{inel}^{NN} = (70 \pm 5) \text{ mb}$

The Nuclear Modification Factor

$$\mathsf{R}_{\mathsf{A}\mathsf{A}}\left(p_{\mathsf{T}}\right) = \frac{1}{\langle \mathsf{T}_{\mathsf{A}\mathsf{A}} \rangle} \frac{dN_{ch}^{AA}/dp_{\mathsf{T}}}{d\sigma_{ch}^{pp}/dp_{\mathsf{T}}}$$

- R_{AA} at 5.02 TeV similar to 2.76 TeV
- Parton production harder at higher energy
- Enhanced parton energy loss in hotter / denser medium?
- So far no cancellation of systematic uncertainties

b–Pb & pp at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

The Nuclear Modification Factor

Models describe R_{AA}

Vitev et al., Phys. Rev. D 93 (2016) no.7 arXiv:1509.02936 Djordjevic et al., arXiv:1601.07852 Majumder et al., Phys. Rev. Lett. 109 (2012) — arXiv:1103.0809

 Further constraint on medium properties (q) possible

e.g.: JET Collaboration: Phys. Rev. C $90, \\ 014909 \text{ arXiv: } 1312.5003v2$

ALI-PREL-107304

The Nuclear Modification Factor

Models describe R_{AA}

Vitev et al., Phys. Rev. D 93 (2016) no.7 arXiv:1509.02936 Djordjevic et al., arXiv:1601.07852 Majumder et al., Phys. Rev. Lett. 109 (2012) — arXiv:1103.0809

 Further constraint on medium properties (q) possible

e.g.: JET Collaboration: Phys. Rev. C $90, \\ 014909 \text{ arXiv: } 1312.5003v2$

ALI-PREL-107308

Preliminary measurement of transverse momentum spectra shown for **pp** and **Pb–Pb** at 5.02 TeV. **Reduced systematic** uncertainties. Reconstruction and track selection improved wrt. Run 1. Nuclear modification factor: **Comparable** to 2.76 TeV. **Model predictions** agree with measurement.

Larger statistics recorded for Pb–Pb and pp. - analysis ongoing.

Backup

Hardening of pp Spectrum

ALICE Collaboration, "Pseudorapidity and transverse-momentum distributions of charged particles in proton–proton collisions at $\sqrt{s} = 13$ TeV", Phys. Lett. B 753 (2016) 319, arXiv:1509.08734.