Dark Model models

Dmitry Gorbunov (INR)

Dark Matter in astrophysics

Rotational curves

Gravitational lensing

"Bullet" cluster

Dmitry Gorbunov (INR)

Dark matter in cosmology

Dmitry Gorbunov (INR)

Dark Matter properties from cosmology:

(If) particles:

- stable on cosmological time-scale
 - requires new (almost) conserved quantum number
- Produced in the early Universe

some time before RD/MD-transition (T = 0.8 eV) on nonrelativistic particles long before RD/MD-transition (T = 0.8 eV) (either Cold or Warm, $v_{RD/MD} \lesssim 10^{-3}$) Otherwise no small-size structures, like dwarf galaxies:

If were in thermal equilibrium:

- (almost) collisionless
- (almost) electrically neutral
- In all matter inhomogeneities (perturbations) are adiabatic:

$$\delta\left(\frac{n_B}{n_{DM}}\right) = \delta\left(\frac{n_B}{n_{\gamma}}\right) = \delta\left(\frac{n_v}{n_{\gamma}}\right) = 0$$

DM models

smoothed out by free streaming

 $M_X \gtrsim$ 1 keV

 $p = 0, v_{sound} = 0$

CMB distortion

p = 0

Astrophysical and cosmological data are in agreement

$$\left(\frac{\dot{a}}{a}\right)^{2} = H^{2}(t) = \frac{8\pi}{3} G \rho_{\text{density}}^{\text{energy}}$$
$$\rho_{\text{density}}^{\text{energy}} = \rho_{\text{radiation}} + \rho_{\text{matter}}^{\text{ordinary}} + \rho_{\text{matter}}^{\text{dark}} + \rho_{\Lambda}$$

$$\begin{split} \rho_{\text{radiation}} & \propto 1/a^4(t) \,, \quad \rho_{\text{matter}} \propto 1/a^3(t) \,, \quad \rho_{\Lambda} = \text{const} \\ & \frac{3H_0^2}{8\pi G} = \rho_{\text{density}}^{\text{energy}}(t_0) \equiv \rho_c \approx 0.53 \times 10^{-5} \, \frac{\text{GeV}}{\text{cm}^3} \end{split}$$

Radiation: $\Omega_{\gamma} \equiv \frac{\rho_{\gamma}}{\rho_{c}} = 0.5 \times 10^{-4}$ Baryons (H, He): $\Omega_{B} \equiv \frac{\rho_{B}}{\rho_{c}} = 0.05$ Neutrino: $\Omega_{V} \equiv \frac{\Sigma \rho_{V_{I}}}{\rho_{c}} < 0.01$ $N_{V} \simeq 3$, $\Sigma m_{V} \lesssim 0.3$ eVDark matter: $\Omega_{PM} \equiv \frac{\rho_{DM}}{\rho_{c}} = 0.27$

 $\Omega_{\rm DM} \equiv \frac{\rho_{\rm DM}}{\rho_c} = 0.27$ $\Omega_{\Lambda} \equiv \frac{\rho_{\Lambda}}{\rho_c} = 0.68$

Dmitry Gorbunov (INR)

DM models

Dark energy:

Interplay: Standard Model and Cosmology

Gauge fields (interactions): γ , W^{\pm} , Z, gThree generations of matter: $L = \begin{pmatrix} v_L \\ e_L \end{pmatrix}$, e_R ; $Q = \begin{pmatrix} u_L \\ d_L \end{pmatrix}$, d_R , u_R

- SM Describes
 - all experiments dealing with electroweak and strong interactions
- SM fails to describe (PHENO)

(THEORY)

- Neutrino oscillations
- Dark matter (Ω_{DM})
- Baryon asymmetry (Ω_B)
- Inflationary stage

- Dark energy (Ω_Λ)
- Strong CP-problem
- Gauge hierarchy
- Quantum gravity
- And hence asks for new physics

 $n_{\rm x} = n_{\overline{\rm x}}$

Weakly Interacting Massive Particles

Assumptions:

- X and \bar{X} are stable (at cosmological time scale)
- 2 no $X \bar{X}$ asymmetry
- **(a)** $(T < M_X)$ in thermal equilibrium with plasma

$$n_{\rm X} = n_{\rm \bar{X}} = g_{\rm X} \left(\frac{M_{\rm X}T}{2\pi}\right)^{3/2} {\rm e}^{-M_{\rm X}/T}$$

 $X\bar{X} \longleftrightarrow$ light particles

Bethe formulae: s-wave: $\sigma_{ann} = \frac{\sigma_0}{v}$

 $X + \overline{X}$ contribution to critical density:

$$\Omega_{\rm X} = 0.1 \times \frac{(1\,\text{TeV})^{-2}}{100 \times \sigma_0} \frac{0.3}{\sqrt{g_*(T_f)}} \ln\left(\frac{g_{\rm X} \textit{M}_{\rm Pl}^* \textit{M}_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2\hbar^2}$$

Dmitry Gorbunov (INR)

WIMPs: discussion

$$\Omega_{\rm X} = 0.1 \cdot \left(\frac{(10 \text{ TeV})^{-2}}{\sigma_0}\right) \frac{10}{\sqrt{g_*(T_f)}} \ln \left(\frac{g_{\rm X} \mathcal{M}_{\rm Pl}^* \mathcal{M}_{\rm X} \sigma_0}{(2\pi)^{3/2}}\right) \cdot \frac{1}{2h^2}$$

- natural DM: subweak-scale cross section σ₀ ~ 0.01 × σ_W say, M_X ~ 1 TeV annihilate through *t*-channel XX → ZZ or X is not a weak gauge eigenstate, g_W → g_W × sin ξ
 naturaly "light" unitarity σ₀ ≤ 4π/M² → M_X ≤ 100 TeV
- all stable particles with smaller σ_0 are forbidden !!
- WIMPs remain in kinetic equilibrium with plasma till $T \sim 10 \,\text{MeV}$

this is Cold Dark Matter, $v_{RD/MD} \ll 10^{-3}$

WIMPs may form dark halos (clumps) much lighter than

dwarf galaxies

Weakly IMPs are mostly welcome (e.g. LSP in SUSY)

We can fully explore the model !!

• Direct searches for Galactic Dark Matter ($v_X \sim 10^{-3}$)

$$X + \text{nuclei} \rightarrow X + \text{nuclei} + \Delta E$$

 Can search for WIMPs in cosmic rays: products of WIMPs annihilation (in Galactic center, dwarf galaxies, Sun)

$$X + \bar{X} \rightarrow p\bar{p}, e^+e^-, v\bar{v}, \gamma, \dots$$

• Can search for WIMPs in collision experiments (LHC):

$$p + p \rightarrow X + \bar{X} + SM + \dots$$

Prospects in WIMP searches

Dmitry Gorbunov (INR)

Present indirect limits on DM annihilation

Dmitry Gorbunov (INR)

Searches for DM particles at LHC ...

LHC helps! Illustration with searches for WIMP-signal

 $g, \gamma, Z, \text{or } W$ \bar{q} χ $\bar{\chi}$ Logic: no light superpartners, $M_{SUSY} > 500 \text{ GeV}$ let's integrate them out to get low energy EFT

$$D1 \text{ (scalar)}: \quad \frac{m_q}{M_*^3} \bar{\chi} \chi \bar{q} q$$

$$D8 \text{ (axial)}: \quad \frac{1}{M_*^2} \bar{\chi} \gamma^\mu \gamma^5 \chi \bar{q} \gamma_\mu \gamma^5 q$$

$$D5 \text{ (vector)}: \quad \frac{1}{M_*^2} \bar{\chi} \gamma^\mu \chi \bar{q} \gamma_\mu q$$

$$D9 \text{ (tensor)}: \quad \frac{1}{M_*^2} \bar{\chi} \sigma^{\mu\nu} \chi \bar{q} \sigma_{\mu\nu} q$$

suppressed by gauge couplings $\alpha_s, \alpha, \alpha_W, \ldots$

q

DM models

N.Zhou et al (2013)

ATLAS and CMS results of searches at @ 8 TeV 1502.01518

LHC limits for annihilation

1502.01518

Competition in testing MSSM

1405.6716

Dmitry Gorbunov (INR)

SHiP

If thermal CDM but not Weakly IMPs?

We still can study the model if DM annihilates (partly) into SM particles

But DM particle X can be light and feebly coupled (t-channel)

$$\sigma_0 \sim rac{\xi^4}{M_X^2}$$

- ξ is not a gauge coupling within GUT !
- With small σ_0 one needs entropy production
- σ_0 may be increased by *s*-channel resonance, $M_Y \approx 2M_X$
- annihilation can be amplified by co-annihilation channels, $X + A \rightarrow SM$
- With light messangers between Dark and Visible sectors many estimates change, say $\sigma_0 = \sigma_0(\nu)$
- DM interaction at freeze-out and now are not the same say, Sommerfield enhancement of the annihilation of slow particles $v \sim 10^{-3}$

船

Constraining the DM model parameter space

Dmitry Gorbunov (INR)

Constraining the DM model parameter space

18/37

1310.8327

Minimal, but still testable: scalar Dark Matter

$$V_{S} = \frac{1}{2}\mu_{S}^{2}S^{2} + \frac{1}{2}\lambda_{hS}S^{2}H^{\dagger}H$$
$$m_{S} = \sqrt{\mu_{S}^{2} + \frac{1}{2}\lambda_{hS}v^{2}}$$
$$\Omega_{S} \propto m_{S}n_{S} \propto \frac{1}{\sigma_{ann}} \propto \frac{m_{S}^{2}}{\lambda_{hS}^{2}}$$
flux(SS \rightarrow SM) $\propto n_{S}^{2}\sigma_{ann} \propto \frac{1}{\lambda_{hS}^{2}}$
$$\Gamma(SA \rightarrow SA) \propto n_{S}\sigma_{ann} \propto \frac{1}{m_{S}}$$

- EW phase transition of I order ?
- EW vacuum stability ?

Dmitry Gorbunov (INR)

indirect:

direct:

ЯN ИR

Constraints on scalar Dark Matter

A.Beniwal et al (2015)

Dmitry Gorbunov (INR)

Discussion on WIMPs

Most natural properties:

- to be in equilibrium in primordial plasma up to very freezout (and in kinetic equilibrium even later)
- to form a symmetric component:

$$X=ar{X}$$
 or $n_X=n_{ar{X}}$

But what we have in reality?

- We are sure there were
 - Big Bang Nucleosynthesis (starting from 1 MeV)
 - Recombination (at about 0.3 eV)

and both are significantly "out-of-equilibrium" processes

• The visible matter is asymmetric, so that

$$f \neq \overline{f}$$
 and $n_f = n_{\overline{f}}$

CDM Problems at small-scales ...?

- NFW profile fits nicely DM in galaxy clusters $\rho \propto r^{-1}(r+r_c)^{-2}$
- Dwarf galaxy density profiles: $\rho_M(r) \propto r^{-(0.5-1.5)}$ cusp most DM-dominated objects

Cores observed (?) 1.2 0.8 10^{-1} r / kpc $o (M_\odot \ pc^{-3}$ 0.6 Jrsa Minor Draco 0.4 10^{-2} LeoII 0.2 Sextans 10^{-3} 2 6 10^{-1} 10^{0} 0

5 Clusters in the Fornax dSph

Dmitry Gorbunov (INR)

r (kpc)

DM models

t / Gyr

8

10

no-scale 100 instead of 1000

CDM Problems ...?

- Missing satellites: $\frac{dN_{obj}}{d \ln M} \propto \frac{1}{M}$
- "Too big to fail" problem
- Solved (?) by Warm Dark Matter (sterile neutrino, gravitino) free-streaming

Dark Matter: Other well-motivated candidates

Unrelated to the EW scale!

٩	sterile neutrinos	active neutrino oscillations
٩	light scalar field	string theory
٩	axion	strong CP-problem
•	gravitino	local SUSY
•	Heavy relics	GUTs
٩	(Topological) defects	GUTs
٩	Massive Astrophysical Compact Heavy Objects	
٩	Primordial black hole (remnants)	Phase transitions
		exotic inflation, reheating
Multicomponent Dark Matter ?		

γ, ν, Η, He

船

Dark Matter properties from astrophysics

stable on cosmological time-scale (almost) collisionless to form ellipsoidal halos (almost) electrically neutral to be Dark stability of globular stellar clusters $M_X \lesssim 10^3 M_\odot \approx 10^{61} \, \mathrm{GeV}$ otherwise too strong tidal forces Sconfinement in a galaxy: quantum physics! de Broglie wavelength: $\lambda = 2\pi/(M_x v_x) < I_{galaxy}$, for bosons \rightarrow $M_{\rm x} \ge 3 \cdot 10^{-22} \, {\rm eV}$ in a galaxy $v_x \sim 0.5 \cdot 10^{-3}$ for fermions Pauli blocking: $M_{\rm x} \ge 750 \, {\rm eV}$ $f(\mathbf{p},\mathbf{x}) = \frac{\rho_{\mathsf{X}}(\mathbf{x})}{M_{\mathsf{X}}} \cdot \frac{1}{\left(\sqrt{2\pi}M_{\mathsf{X}}v_{\mathsf{X}}\right)^3} \cdot e^{-\frac{\mathbf{p}^2}{2M_{\mathsf{X}}^2v_{\mathsf{X}}^2}} \bigg|_{\mathbf{p}=0} \leq \frac{g_{\mathsf{X}}}{(2\pi)^3}$

aravitino

Dark Matter: non-thermal production

- in the primordial plasma of SM particles (via scatterings, oscillations):
- at phase transitions:

Ouring inflation:

- at reheating (after inflation?):
 - perturbatively:
 - non-perturbatively:

sterile neutrino of 1-50 keV axion of $10^{-4} - 10^{-7}$ eV Q-balls strangelets (?) classical scalar any guy coupled (only) to inflaton inflaton decays production by external (inflaton) field Bose-enhancement of

coherent production by external field

Solution while the Universe expands:

gravity produces any particles at $H \sim M_X$

Dark Matter: Other well-motivated candidates

Unrelated to the EW scale!

- sterile neutrinos sharp line: $v_s \rightarrow v_a + \gamma$, (XMM, INTEGRAL, ...)
- caustics in Bose condensate light scalar field
 - oscillations $a + \mathbf{B} \rightarrow \gamma$
 - missing energy at LHC,
 - if unstable: decay into Cosmic rays
 - lensing of CMB
 - microlensing
 - Cosmic rays
- axion gravitino Heavy relics (Topological) defects Massive Astrophysical Compact Heavy Objects
- Primordial black hole (remnants)

Axion: Natural but fine-tuned

Theory and Nature: 10⁻⁶ ISW $\Delta \mathscr{L} \propto \frac{\theta}{\theta} G_{\mu\nu} G_{\lambda\rho} \varepsilon^{\mu\nu\lambda\rho}$ (ALPS) Axion-Photon Coupling | g_{ayy}| (GeV⁻¹) 10⁻⁸ $\theta < 10^{-9}$ Helioscopes nonantropic parameter! **10⁻¹⁰** (CAST) Aassive Stars fot DM $\theta \rightarrow \theta + a(x)/f_a$ ALPS II 10⁻¹² $m_{\rm axion} \simeq f_{\pi} m_{\pi}/f_a$ IAXO Haloscopes SN1987 (ADMX) $\mathscr{L} \propto g_{a\gamma\gamma} \times a(x) F_{\mu\nu} F^{\mu\nu}$ 10⁻¹⁴ Dark Matter region ADMX future $\frac{\Omega_{\text{axion}}}{\Omega_{DM}} = \bar{\theta}_i^2 \cdot \left(\frac{4 \cdot 10^{-6} \,\text{eV}}{m_{\text{avion}}}\right)^2$ 10⁻¹⁶ 10⁻⁶ 10⁻⁵ 10⁻³ 10⁻⁸ 10⁻⁷ 10⁻² 10⁻¹ 10⁻⁴ 10⁰ 10¹ Axion Mass m_a (eV)

P.W. Graham et al (2016)

Natural: Sterile neutrino Dark Matter

massive fermions giving mass to active neutrino through mixing

 $m_a \sim heta^2 m_{sn}$

• unstable, but exceeding the age of the Universe at condition

$$\theta^2 < 1.5 \times 10^{-7} \left(\frac{50 \,\mathrm{keV}}{m_{\mathrm{sn}}}\right)^5$$

• can be searched for because of two-body radiative decay

Sterile neutrino Dark Matter

Sterile neutrino Dark Matter...

brown: MW satellite counts green and yellow: Lyman- α

Free massive scalar field

•

$$\mathscr{L}=rac{1}{2}m{g}^{\mu
u}\partial_{\mu}\phi\partial_{\mu}\phi-rac{1}{2}m_{\phi}^{2}\phi^{2}$$

For the homogeneous scalar field in FLRW expanding Universe

$$\ddot{\phi}+\mathbf{3}H\dot{\phi}+m_{\phi}^{2}\phi=0$$

we find two-stage evolution:

$$\begin{array}{ll} m_{\phi} < H(t) & \Longrightarrow & \phi = \phi_i = {\rm const} \\ m_{\phi} > H(t) & \Longrightarrow & \rho = \langle E_k \rangle - \langle E_\rho \rangle = 0 \,, \quad \rho \sim m_{\phi}^2 \phi^2 \propto 1/a^3 \end{array}$$

• dust-like substance in the late Universe, $\Omega \propto m_{\phi}^{1/2} \phi_i^2$ depends on initial conditions

presureless at spatial scales *l* > 1/*m*_φ fuzzy DM
 may help (?) with CDM-problems (core-cusp, lack of dwarfs, etc)

Dark Matter: possible guiding principles

Naturality:

Minimality:

Reality:

Deep insight into the exploit known gravitational properties of interactions Use as little new physics as dark matter possible examples: WIMPs, what happen free particles Motivation: at small scales? No any hints of part of a status of: new physics in experiment well-motivated model cusp/core in galactic centers examples: LSP, axion, Many models are lack of dwarf galaxies sterile neutrinos untestable lack of small galaxies • Why $\Omega_B \sim \Omega_{DM}$? example: examples: examples: gravitationally produced cold dark matter antibaryonic DM free massive fermion warm dark matter selfinteracting dark matter Mirror World

Examples: both Natural and Minimal

Natural source of dark matter production: gravity

Gravity produces any free massive particle when metric changes in the expanding Universe

most efficiently when $H \sim M$

say, at radiation domination stage

$$\Omega_X \sim \left(\frac{M_X}{10^9\,\text{GeV}}\right)^{5/2}$$

S.Mamaev, V.Mostepanenko, A.Starobinsky (1976)

Modified gravity $(R \rightarrow R - R^2/6\mu^2)$

may be responsible for inflation and subsequent reheating

A.Starobinsky (1980)

that is (universal) production of all particles, including those of dark matter

$$\Omega_X \simeq 0.15 imes \left(rac{M_X}{10^7 \, {
m GeV}}
ight)^3$$

D.Gorbunov, A.Panin (2010)

Untestable

Observation:

why $ho_B \sim ho_{DM}$?

coincidence

all well-motivated (hence, natural) models (WIMPs, axions, sterile neutrinos) imply this answer

- Partly coincidence, because:
 - If *ρ_{DM} ≪ ρ_B* then DM is unobservable DM can be formed by several specia, only one of which dominates
 - if $\rho_{DM} \gg \rho_B$ then what ?

(anthropic arguments...?)

May be a hint at common origin of dark matter production and baryon asymmetry generation in the early Universe

Dark Matter — messenger — Baryon

Searching for messenger X_a

 $\frac{\lambda_a}{M^2} \bar{X}_a d_R \bar{u}^C d_R$

- If light the best place is a fixed target, e.g. SHiP
- if heavy, the best place is LHC
- At LHC the same WIMP-like signature monojet + missing P_T

$$d+d \rightarrow \bar{u}+X$$
, $d+u \rightarrow \bar{d}+X$

Other channels for LHC

BAU is explained by any "neutron-like portal"
 All options must be probed

$$-\mathscr{L}_{int} = \frac{\lambda_a}{M^2} \bar{X}_a d_R \bar{u}^C d_R$$
$$d = d, s, b$$
$$u = u, c, t$$
$$d + d \rightarrow \bar{t} + X$$

• Searches for $X \rightarrow dd\bar{u}$

S. Demidov, D. G., D. Kirpichnikov (2014)

signatures: jet + 3 jets [forming a particle (invariant mass m_{jjj}^2)] jet + 2 jets + *b*-jet [...] jet + 2 jets + \bar{t} -quark [...] *b*-jet + ... \bar{t} -quark + ...

Dmitry Gorbunov (INR)

Conclusions

- We have many Dark Matter models
- Several (and well-motivated, like WIMPs) will be explored at present (e.g. LHC) and forthcoming (e.g. CTA) experiments
- But more model will be invented
- Dark Matter may be multicomponent
- It would be helpful to get more hints from cosmology

DM discovery in a particle physics experiment is not guaranteed !! But no reasons to give up either

DM models

1610.03071