Contribution ID : 50

The comparison of calculated atmospheric neutrino spectra with measurement data of IceCube and ANTARES experiments

Wednesday, 12 October 2016 15:30 (30)

The processing of the IceCube experiment data obtained during 988 days (2010–2014) revealed 54 neutrinoinduced events with deposited energies 20 TeV - 2 PeV [1]. The hypothesis of an astrophysical origin of these neutrinos is confirmed at 5.7 σ CL. To identify reliably the neutrino events a thorough calculation of the atmospheric neutrino background should be performed. We calculate the atmospheric neutrino spectra in the energy range of 100 GeV - 10 PeV using the set of the hadronic models and several parametrizations of cosmic ray spectra supported by experimental data. It is shown that rare decays of short-lived neutral kaons contribute close to one third of the atmospheric conventional electron neutrinos at the energies above 100 TeV. The account for kaons production in pion-nucleus collisions gives rise to increase the ν_e flux by 5–7% in the energy range of 100 GeV – 100 TeV. The detailed comparison of our calculations performed with use of Z(E, h) -functions approach [2], with those of MCEq method by A.Fedynitch et al. [3], shows the consistency on the whole at least in the energy range 100 GeV – 1 PeV. Calculated neutrino spectra agree rather well with the measurement data of the experiments IceCube [4,5] and ANTARES [6]. Uncertainties of the measurement data above 400 TeV leave a window for the the QGSM prompt neutrino component [2].

[1] Aartsen M.G. et al. (IceCube Collaboration). Evidence for high-energy extraterrestrial neutrinos at the IceCube detector // Science 2013. V. 342, 1242856; Phys. Rev. Lett. 113, 101101 (2014); arXiv:1510.05223.

[2] Sinegovskaya T.S, Morozova A.D., Sinegovsky S.I. High-energy neutrinos fluxes and flavor ratio in the Earth's atmosphere. Phys. Rev. D. 2015. V. 91, 063011.

[3] Fedynitch A. et al. Calculation of conventional and prompt lepton fluxes at very high energy, EPJ Web Conf. 2015. V. 99, 08001; arXiv:1503.00544.; Fedynitch A. et al. MCEQ - numerical code for inclusive lepton flux calculations. PoS (ICRC2015) 1129; http://github.com/afedynitch/MCEq/.

[4] Aartsen M.G. et al. (IceCube Collaboration). Development of a general analysis and unfolding scheme and its application to measure the energy spectrum of atmospheric neutrinos with IceCube. Eur. Phys. J. C. 2015. V. 75, 116.

[5] Aartsen M.G. et al. (IceCube Collaboration). Measurement of the atmospheric ve spectrum with IceCube. Phys. Rev. D. 2015. V. 91, 122004.

[6] Adrian-Martinez S. et al. Measurement of the atmospheric muon neutrino energy spectrum from 100 GeV to 200 TeV with the ANTARES telescope. Eur. Phys. J. C. 2013. V.73, 2606.

Primary author(s) : Ms. MOROZOVA, Anna (Moscow State U.); Prof. SINEGOVSKY, Sergei (Irkutsk State University, Institute of Apliied Physics)

Co-author(s) : Dr. KOCHANOV, Alexey (ISTP,SB RAS); Dr. SINEGOVSKAYA, Tatyana (Irkustk State Rail Way University)

Presenter(s): Ms. MOROZOVA, Anna (Moscow State U.); Prof. SINEGOVSKY, Sergei (Irkutsk State University, Institute of Apliied Physics)

Session Classification : Poster session - III

Track Classification : Nuclear physics and particle physics