Study of the effect of neutron irradiation on SiPM based 10 -channel prototype of scintillation detector module made at JINR

JINR: S, Reznikov, V.Ladygin, A.Khrenov, S.Piyadin, A NPI Rez: VKushpil, A.Kugler, S.Kushpil, VMikhaylov,
O. Svoboda, P.Tlusty, M.Majerle, M.Stefánik

The work has been supported in part by the Scientific Cooperation program JINR-Czech Republic for 2016 and RFBR under grant 16-02-00101a

SiPM based 10-channel prototype module

KETEK PM3350

PSD and ZDC

NA61 Projectile Spectator Detector

60 sandwiches in one module
16 inner modules of $10 \times 10 \times 120 \mathrm{~cm}^{3}$
28 outer modules of $20 \times 20 \times 120 \mathrm{~cm}^{3}$
Total weight ~ 17 tons, $17-25 \mathrm{~m}$ from target
No beam hole for intensity up to 2×10^{5} ions $/ \mathrm{sec}$
NA61 beam energy up to 150 AGeV

NICA MPD Zero Degree Calorimeter

60 sandwiches in one module
16 modules of 5×5 ? $\times 120 \mathrm{~cm}^{3}$
Total weight ~ 10 tons, 28 m from collision estimate
Beam hole ($10 \times 10 \mathrm{~cm}$) for intensity up to $1 \times 10^{\circ}$??? ions $/ \mathrm{sec}$
NICA beam energy up to ${ }^{s_{\mathrm{NN}}}=11 \mathrm{GeV} ?\left(\sim \mathrm{E}_{\text {beam }}=63 \mathrm{AGeV}\right)$

Cyclotron U120M

Cyclotron U120M (fast neutrons)

Cyclotron U120M $\left(\mathrm{p}+\mathrm{D}_{2} \mathrm{O}\right)$

Cyclotron U120M(p + Be)

For source NG1 Maximum of Flux
$\sim 10^{8}-10^{9}-$
[$\mathrm{n} / \mathrm{cm}^{2} / \mathrm{s}$]

For source NG2 Maximum of Flux
$\sim 10^{11}\left[\mathrm{n} / \mathrm{cm}^{2} / \mathrm{s}\right]$

Some results have been published

Fluence, $\mathbf{n} / \mathrm{cm}^{2}$
S.G.Reznikov et al., Performance studies of the PSD readout board prototype, CBM Progress Report 2015, GSI, Darmstadt, ISBN: 978-3-9815227-3-0, p. 102.

Beta source spectra

Before irradiation

After ~4.2x10^8 n/cm2

LED spectra

Before irradiation

After $\sim 4.2 \times 10^{\wedge} 8 \mathrm{n} / \mathrm{cm} 2$

Vpp-V \& I-V curves

Conclusions

1. KETEK PM3350 and corresponding electronics behave good enough till fluence of about $4.2 \times 10^{\wedge} 8 \mathrm{n} / \mathrm{cm} 2$.
2. The decreasing of signal amplitude by a factor of 1.4 could be explained by uncontrolled temperature drift at least partially.
3. The main effect of neutron irradiation is noise increased by a factor of 2-3 depending on bias voltage. Again it could be explained by temperature rise, but only to some extent. The increased noise also spoiled resolution.
4. The proposed procedure of estimation of breakdown voltage by measuring dependence of noise Vpp (or Vrms as alternative) vs bias voltage seems to be adequate for practical use. No changes of breakdown voltages were observed after irradiation to the fluence mentioned above.

Thank you

for your attention!

Table 1: Known DC methods to determine the SiPM breakdown voltage from a real I-V curve

