

The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016)

Nuclear physics and particle physics

Azimuthal decorrelation of jets widely separated in rapidity in pp collisions at $\sqrt{s} = 7$ TeV (10.1007/JHEP08(2016)139)

CMS collaboration

Ivan Pozdnyakov Institute for Theoretical and Experimental Physics (ITEP)

10 - 14 October 2016 | MEPhI, Moscow

Content:

- 1. Introduction and Motivation
- 2. CMS Detector and collaboration
- 3. Observables for di-jet decorrelations:

DATA
 HEJ+ARIADNI
 PYTHIA 6 Z2
 PYTHIA 8 4C

5. Summary and Conclusions

Introduction

QCD at LHC

Introduction:

Mueller-Navelet dijets: max Δy in the event ($y \approx \eta$)

A.H.Mueller , H.Navelet, Nucl. Phys. B 282 (1987) 727

jet $p_T > 35 \text{ GeV}$, |y| < 4.7

$$y = \frac{1}{2} \ln\left(\frac{E + p_z}{E - p_z}\right) \approx -\ln\left(\tan\left(\frac{\theta}{2}\right)\right) = \eta$$
$$\Delta y = |y_1 - y_2|$$

- invariant to collision-axis boost

$$\Delta \phi - 0 < \Delta y < 3, 3 < \Delta y < 6, 6 < \Delta y < 9.4$$

C2/C1, C3/C2

✓ Decorrelation in azimuthal plane reflects radiation activity between jet

Motivation:

DGLAP log(Q^2) $\frac{\sqrt{s}}{2} \ge k_T$ vs $\frac{\sqrt{s}}{2} \ge k_T$ BFKL log(1/x) ✓ BFKL kinematic region should be determined experimentally

✓ BFKL effects enhanced by $(\alpha_s \Delta y)^n$

- 1. New region reached with CMS HF
- 2. Increased energy 7-8 TeV and low Pile-Up Runs
- 3. Forward-Backward Trigger

At low p_T: x ~ 10^-5

Forward-Backward Jets with low pT is an essential aspect of small-x physics

CMS Detector

From inside out:

Silicon pixel PbWO4 crystals - EM Silicon strip Scintillator based - HAD

 return yoke instrumented with muon chambers

Tracker 1.5.10-4 pT(GeV) σ/pT ⊕0.005 **EM Calorimeter** 2.9%/√E(GeV) $\sigma E/E$ ≈ **⊕** 0.5% ⊕ 0.13GeV/E **HAD Calorimeter** 120%/√E(GeV) σE/E ≈ ⊕ 6.9% (|η| < 3) ≈ 198%/√E(GeV) $\sigma E/E$ ⊕ 9% (3 < |η| < 5)

Muon Spectrometer

σpT/pT ≈ 1% low-pT muons σpT/pT ≈ 5% 1-TeV muons

Low Pile-Up Runs:

2010 data

AntiKt R = 0.5 Jet Clustering

oct 2016, Moscow

Previous results:

 Sensitivity to different models

- Expected more decorrelations with BFKL
- L0xPartonShowers Herwig 6 describes data, NLO JETRAD does not

Models for comparison

✓ High level of back-to-back correlation in the region Δy < 3.0 becomes less peaked at Δφ ≈ π when going to larger Δy

∆y < 3.0

PYTHIA 6 and HERWIG ++ PYTHIA 8 and SHERPA

describe the data well, showing some deviation only at low $\Delta \phi$ exhibit significant deviations from the data beyond the uncertainties at intermediate and large $\Delta \phi$

$$3.0 < \Delta y < 6.0$$
 and $6.0 < \Delta y < 9.4$
PYTHIA 6 and 8
HERWIG ++ and SHERPA

show a significant deviation at small $\Delta \phi$ show deviations to the measurements in the medium $\Delta \phi$ region, but are close to the data at very small $\Delta \phi$

HEJ + ARIADNE package overestimates the azimuthal decorrelation at small $\Delta \phi$ at all Δy

NLL BFKL agree well with the data within the experimental and theoretical uncertainties

A better theoretical prediction might be obtained if colour-coherence contributions are replaced by the complete BFKL calculation at large Δy

oct 2016, Moscow

MPI deviations are much smaller than systematic uncertainties

oct 2016, Moscow

Summary & Conclusions

- ✓ MN dijets measured for the first time up to ∆y < 9.4 with pT > 35 GeV
 ✓ PYTHIA 6 Z2, PYTHIA 8 4C, HERWIG++ 2.5, SHERPA 1.4
- do not provide a good description of all measurements, but **Herwig++** gives overall best description
- ✓ **NLL BFKL** agrees well with the data for all measured observables within the experimental and theoretical uncertainties at $\Delta y > 4$
- ✓ MPI deviations are much smaller than systematic uncertainties

The observed sensitivity to the implementation of the colour-coherence effects in the DGLAP MC generators and the reasonable data-theory agreement shown by the NLL BFKL analytical calculations at large Δy , may be considered as indications that the kinematical domain of the present study lies in between the regions described by the DGLAP and BFKL approaches

Tuning of QCD MC models is essential since they can not describe all data within experimental uncertainties

The 2nd International Conference on Particle Physics and Astrophysics (ICPPA-2016)

Nuclear physics and particle physics

Thank you for your attention!

yours Azimuthal Decorrelations

