Centrality determination in heavy-ion collisions with CBM experiment

Viktor Klochkov
(GSI, Frankfurt University)

Ilya Selyuzhenkov
(GSI)

for the CBM Collaboration
Collision geometry

Heavy-ion collision geometry: impact parameter, number of participants, binary collisions.

Cannot be measured directly!
Centrality: estimating geometry in experiment

Collisions are grouped into event (centrality) classes with the most central class defined by events with the highest multiplicity (smallest forward rapidity region energy) which corresponds to small values of the impact parameter.

A procedure to convert between average model quantities (⟨b⟩, ⟨N_{part}⟩, etc) and measurable multiplicities / energies is needed.
Facility for Antiproton and Ion Research (FAIR)

SIS100 primary beams:
- 10^9/s Au up to 11 GeV/u
- 10^9/s C, Ca, ... up to 14 GeV/u
- 10^{11}/s p up to 29 GeV
CBM experiment subsystems used in centrality determination

Silicon Tracking System (STS)

STS+MVD allows to measure the multiplicity of produced particles

The central part of the PSD is sensitive mostly to spectator fragments

Projectile Spectator Detector (PSD)

Transverse to the beam layout of the PSD modules.

Hole is needed because of high beam intensities

STS TDR https://repository.gsi.de/record/54798

PSD TDR https://repository.gsi.de/record/109059
Simulation setup

<table>
<thead>
<tr>
<th>Models</th>
<th>UrQMD (no fragments), DCM-QGSM (with fragments)</th>
</tr>
</thead>
<tbody>
<tr>
<td>System</td>
<td>Au-Au</td>
</tr>
<tr>
<td>Energy</td>
<td>10 AGeV</td>
</tr>
<tr>
<td>Statistics</td>
<td>~0.5M events</td>
</tr>
<tr>
<td>CBM geometry</td>
<td>MVD, STS, RICH, TDR, TOF, PSD</td>
</tr>
<tr>
<td>PSD geometry</td>
<td>44 modules, 4 central, 6 cm hole, elongated in x</td>
</tr>
<tr>
<td>Transport code</td>
<td>GEANT4</td>
</tr>
<tr>
<td>Detector response</td>
<td>CBMRoot</td>
</tr>
</tbody>
</table>
Centrality estimators in CBM

PSD is sensitive mostly to spectator fragments.
STS+MVD provide the multiplicity of produced particles.
Estimating model parameters with measured quantities

Events with multiplicities $M \pm \Delta M$ have impact parameter in range $B \pm \sigma$
Estimating model parameters with measured quantities

Events with multiplicities $M \pm \Delta M$ have impact parameter in range $B \pm \sigma$
Centrality determination with track multiplicity

Track multiplicity classes

Average impact parameter versus centrality

N_{trk} - number of STS+MVD tracks with at least 3 hits

Centrality selection for peripheral events (50-100%) is difficult due to low multiplicity.
Centrality determination with track multiplicity

Track multiplicity classes

CBM simulation, Au+Au, 10AGeV, 500K events, UrQMD

50% of events

5% of events

Counts

0 <40 tracks

0 0.2 0.4 0.6 0.8 1 1.2

M_{trk}/M_{trk, max}

σ_{b}/

Impact of b<15.8 fm cut in UrQMD

With 5% wide centrality classes the impact parameter resolution is below 7% for midcentral events
Centrality determination with PSD energy

Impact parameter resolution with different centrality estimators

CBM simulation, Au+Au, 10AGeV, 500K events, UrQMD

Energy in central modules

PSD is an independent centrality estimator. Impact parameter resolution obtained with PSD1 is comparable to that of the STS for central events and by ~20% worse than for midcentral.
Simulation with fragments

Loss of fragments due to the hole

Apply cuts on correlation to remove events with fragments.
It introduces bias for centrality determination with PSD in very peripheral collisions.
Combined centrality selection with PSD1 and STS

Centrality determination procedure for 2D correlation:
- Iterative fitting (profiling, fitting, profile perp. to the fit, refit)
- Slicing perpendicular to refit

Using correlation between track multiplicity and energy in PSD improves the impact parameter resolution in central (0-30%) collisions
Glauber Monte-Carlo fit
(similar to the approach used by ALICE at the LHC*)

1. Fitting data with Glauber model based function:

\[F_{\text{fit}}(f, \mu, \sigma) = P_{\mu, \sigma} \circ \left[f \ N_{\text{part}} + (1-f) \ N_{\text{coll}} \right] \]

where \(P_{\mu, \sigma} \) is negative binomial distribution, \(N_{\text{part}} \) and \(N_{\text{coll}} \) are simulated with Glauber Monte-Carlo.

2. Total cross-section estimation

3. Determine the “anchor” point (deviation from the Glauber fit)

*ALICE IJMPA 29 (2014) 1430044
Self-consistency of the fitting algorithm

1. Generate function with a fixed (input) parameters f, σ and μ
2. Fit generated function in some range (for example $M>30$)
3. Compare fit parameters with input values

Minimal value for χ^2 corresponds to $f \approx 0.7$, $\sigma \approx 0.6$ and $\mu \approx 0.26$ which is close to real values

Extracted values are sensitive to the fit range!

Plotted for best μ fit

χ^2

σ

f
Glauber Monte-Carlo fit for different multiplicity ranges

Best fit parameters are similar for different fit ranges. The best fit corresponds to small contribution of N_{coll} (f=1).
Extract model parameters with MC-Glauber (both width and mean) are consistent with simulated DCM-QGSM values using multiplicity for centrality classes determination. For peripheral (>50%) collisions small difference for mean is observed.
Procedure for centrality determination

1. Determine the total cross-section and the "anchor" point (a value below which determination is not reliable) based on a fit with a Glauber model based function

2. Make all variables dimensionless

3. Parameterise the 2D correlation between multiplicity and/or PSD subgroup energies (in case of 2D analysis)

4. Slice the 2D correlation or 1D distribution

5. Using CentralitySlice objects to get centrality for a given event via user interface
Testing the procedure with real data (NA61/SHINE)

In reality performance of the detectors changes with time (detector gain variations, beam parameters variations, etc)

Run-by-run correction procedure was implemented for CBM
Summary

- Centrality Framework was developed for CBM. It includes the following components:
 - Centrality determination based on energy in PSD and track multiplicity
 - MC-Glauber fitting procedure to determine the total cross-section and the "anchor" point
 - Run-by-run equalization of centrality estimators
- Centrality Framework was tested with CBM simulations and NA61/SHINE Pb+Pb test data
 - The impact parameter resolution obtained with the PSD centrality estimation is comparable to that of the STS
 - PSD usage is limited due to loss of fragments in a beam hole

Next steps:
- Expand model parameters estimation for selection with PSD and correlation