The effect of inclusion of Δ resonances in relativistic mean-field model with scaled hadron masses and coupling constants

K. A. Maslov E. E. Kolomeitsev1 D. N. Voskresensky

National Research Nuclear University "MEPhI"
1 Matej Bel University, Banska Bystrica, Slovakia

The 2nd International Conference on Particle Physics and Astrophysics
Moscow
2016
Introduction

The equation of state (EoS) of strongly interacting baryonic matter for various baryon number densities n, temperatures T and isospin asymmetries $\beta = (n_n - n_p)/n$ is required for a description of:

- finite nuclei ($T=0$, $n \simeq n_0$, $\beta \ll 1$)
- heavy ion collisions (HIC) ($0 < T < 100 - 200$ MeV, $0 < n < 5 - 10 n_0$, $\beta \ll 1$)
- neutron stars (NS) ($T=0$, $0 < n \lesssim 10 n_0$, $0 < \beta < 1$)

A vast number of constraints follow from the experimental results in these areas. The EoS at $T=0$ should:

- Reproduce bulk properties of nuclei
- Pass the constraints for the pressure at $T=0$ from analyses of flows and kaon production in HIC
- Support the existence of NSs with masses $> M[\text{PSR J0348+0432}] = 2.01 \pm 0.04 M_\odot$ – the maximum precisely measured NS mass
- Not contradict the NS cooling data
- Describe the known ratio of baryon and gravitational masses for PSR J0737-3039(B).
EoS models

There are many EoSs of two types:

Microscopic approaches
- Many-body theories starting from potentials which reproduce scattering phases in vacuum
- Robust for low n, large uncertainties already at $n \approx n_0$
- Non-relativistic approaches ⇒ breaking of causality at higher densities

Phenomenological approaches

current work
- Models with parameters (coupling constants, meson masses, etc.) adjusted to reproduce the observable properties
- Relativistic framework ⇒ causality preserved

Phenomenological relativistic mean-field models: successfully described finite nuclei, HIC and neutron stars
Flow & maximum mass constraint

Constraint for the pressure at $T = 0$ in ISM, obtained from analyses of transverse and elliptic flows in HICs

Flow constraint – soft EoSs

Maximum NS mass constraint – stiff EoS

Additional flexibility needed

- New interaction terms in the Lagrangian
- Density-dependent coupling constants – needs an additional procedure for restoring self-consistency
- Field-dependent coupling constants ← current work
If one uses hyperon potentials consistent with hypernuclear data, then with increasing density already at $n \gtrsim 2 \div 3 n_0$ conversions

$\begin{align*}
 p + e^- & \leftrightarrow \Lambda + \nu_e, \\
 n + e^- & \leftrightarrow \Sigma^- + \nu_e \\
 \ldots
\end{align*}$

becomes energetically favorable.

[H. Diapo, B.-J. Schaefer and J. Wambach
PRC81 (2010), J. Schaffner-Bielich NPA804 (2008)]

Chemical equilibrium condition (Q_B – electric charge of a baryon B):

$$\mu_B = \mu_N - Q_B \mu_e$$

The appearance of new species results in a softening of the EoS and maximum NS mass decrease
In a majority of realistic models the maximum NS mass decreases below the observed values. Problem can be resolved in relativistic mean-field (RMF) models by taking into account a hadron mass and couplings in-medium modifications [K. A. M., E. E. Kolomeitsev and D. N. Voskresensky NPA 950 (2016)]
Δ-resonance puzzle?

A recent work* showed that an appearance of Δ(1232)-resonances is possible in the NS medium. Same problem as for hyperons: EoS softens ⇒ maximum NS mass can decrease below the observed limit.

How does the inclusion of Δ-resonances change the EoS in the RMF model with scaled hadron masses and couplings?

Generalized relativistic mean-field model

E. E. Kolomeitsev, D.N. Voskresensky, NPA 759 (2005)
present work

\[\mathcal{L} = \mathcal{L}_{\text{bar}} + \mathcal{L}_{\text{mes}} + \mathcal{L}_{l}, \]

\[\mathcal{L}_{\text{bar}} = \sum_{i=\text{b, r}} (\bar{\Psi}_i \left(iD^{(i)}_\mu \gamma^\mu - m_i \Phi_i(\sigma) \right) \Psi_i, \]

\[D^{(i)}_\mu = \partial_\mu + ig_{\omega i} \chi_{\omega i}(\sigma) \omega_\mu + ig_{\rho i} \chi_{\rho i}(\sigma) \vec{\rho}_\mu + ig_{\phi i} \chi_{\phi i}(\sigma) \phi_\mu, \]

\[\{b\} = (N, \Lambda, \Sigma^{\pm,0}, \Xi^{-,0}, \Delta^{-,0}, \Delta^{+,0}, \Delta^{++,0}) \]

\[\mathcal{L}_{\text{mes}} = \frac{\partial_\mu \sigma \partial^\mu \sigma}{2} - \frac{m^2_\sigma \Phi^2_\sigma(\sigma) \sigma^2}{2} - U(\sigma) + \]

\[+ \frac{m^2_\omega \Phi^2_\omega(\sigma) \omega_\mu \omega^\mu}{2} - \frac{\omega_{\mu\nu} \omega^{\mu\nu}}{2} + \frac{m^2_\rho \Phi^2_\rho(\sigma) \vec{\rho}_\mu \vec{\rho}^\mu}{2} - \frac{\rho_{\mu\nu} \rho^{\mu\nu}}{4} + \]

\[+ \frac{m^2_\phi \Phi^2_\phi(\sigma) \phi_\mu \phi^\mu}{2} - \frac{\phi_{\mu\nu} \phi^{\mu\nu}}{4}, \]

\[\omega_{\mu\nu} = \partial_\nu \omega_\mu - \partial_\mu \omega_\nu, \quad \vec{\rho}_{\mu\nu} = \partial_\nu \vec{\rho}_\mu - \partial_\mu \vec{\rho}_\nu, \quad \phi_{\mu\nu} = \partial_\nu \phi_\mu - \partial_\mu \phi_\nu, \]

\[\mathcal{L}_{l} = \sum_l \bar{\psi}_l (i\partial_\mu \gamma^\mu - m_l) \psi_l, \quad \{l\} = (e, \mu). \]
Mean-field approximation

Meson fields are threatened as classical fields:

\[\sigma \rightarrow \langle \sigma \rangle \equiv \bar{\sigma}, \quad \omega^\mu \rightarrow \langle \omega^\mu \rangle \equiv (\omega_0, \vec{0}), \quad \rho^\mu_i \rightarrow \langle \rho^\mu_i \rangle = \delta_{i3}(\rho_0, \vec{0}) \]

Meson mean-field values can be obtained by averaging the equations of motion by the ground state (analogically for \(\phi \) meson):

\[
\begin{align*}
\omega_0 &= \frac{1}{m_\omega^*} \sum_B g_{\omega B} \chi_{\omega B}(\sigma) n_B, \\
\rho_0 &= \frac{1}{m_\rho^*} \sum_B g_{\rho B} \chi_{\rho B}(\sigma) t_{3B} n_B,
\end{align*}
\]

\[
\phi_0 = \frac{1}{m_\phi^*} \sum_B g_{\phi B} \chi_{\phi B}(\sigma) n_B
\]
Energy density functional

\[E = -\mathcal{L} = \frac{m_N^4 f^2}{2C_{\sigma}^2} \eta_\sigma(f) + \frac{C_\omega^2}{2m_N^2 \eta_\omega(f)} \left(\sum_b x_{\omega b} n_b \right)^2 + \]

\[+ \frac{C_\rho^2}{2m_N^2 \eta_\rho(f)} \left(\sum_b x_{\rho b} t_{3b} n_b \right)^2 + \frac{C_\omega^2}{2m_N^2 \eta_\phi(f)} \frac{m_\omega^2}{m_\phi^2} \left(\sum_H x_{\phi H} n_H \right)^2 + \]

\[+ \sum_b \left(2S_b + 1 \right) \int_0^{p_{F,b}} \frac{p^2 dp}{2\pi^2} \sqrt{p^2 + m_b^2 \Phi_b^2(f)} + E_l, \]

\[E_l = \sum_{l=e,\mu} \int_0^{p_{F,l}} \frac{p^2 dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_i N m_N}{m_i}, \quad i = \sigma, \omega, \rho. \]

Scaling functions

Redefine the scalar field \(f = g_N \chi_N(\sigma) \sigma / m_N, \)

Without finite size effects only \(\eta_m = \Phi_m^2(f) / \chi_{mB}^2(f), \quad m = \sigma, \omega, \rho, \phi \)

\(\Phi_N(f) = \Phi_m(f) = 1 - f, \) all hadron masses scale the same way

\(\Phi_H(f) = \Phi_N(x_{\sigma H}(\chi_{\sigma H}(f) / \chi_N(f)) f m_N / m_H), \)

\(x_{mB} = g_{mB} / g_{mN} \)
Energy density functional

\[E = -\mathcal{L} = \frac{m_N^4 f^2}{2C_\sigma^2} \eta_\sigma(f) + \frac{C_\omega^2}{2m_N^2 \eta_\omega(f)} \left(\sum_b x_{\omega b} n_b \right)^2 + \]

\[+ \frac{C_\rho^2}{2m_N^2 \eta_\rho(f)} \left(\sum_b x_{\rho b} t_{3b} n_b \right)^2 + \frac{C_\omega^2}{2m_N^2 \eta_\phi(f)} m_\omega^2 \left(\sum_H x_{\phi H} n_H \right)^2 + \]

\[+ \sum_b \left(2S_b + 1 \right) \int_0^{p_{F,b}} \frac{p^2 dp}{2\pi^2} \sqrt{p^2 + m_b^2 \Phi_b^2(f)} + E_l, \]

\[E_l = \sum_{l=e,\mu} \int_0^{p_{F,l}} \frac{p^2 dp}{\pi^2} \sqrt{p^2 + m_l^2}, \quad C_i = \frac{g_i N m_N}{m_i}, \quad i = \sigma, \omega, \rho. \]

\[\implies \text{Equation of motion:} \quad \frac{\partial E}{\partial f} = 0 \Rightarrow f(n_B). \]

\[\implies \text{Beta-equilibrium and electrical neutrality conditions (} Q_i \text{-electric charge of particle species } i): \]

\[\mu_n = \mu_b - Q_b \mu_e \]

\[\sum_{i=b,l} Q_i n_i = 0 \quad \Rightarrow n_B(n), n_l(n) \]
Saturation properties

For comparing the EoS at the saturation:
\[\mathcal{E} = \mathcal{E}_{\text{bind}} + \frac{K}{18} \epsilon^2 - \frac{K'}{162} \epsilon^3 + \ldots + \beta^2 \left(J + \frac{L}{3} \epsilon + \frac{K_{\text{sym}}}{18} \epsilon^2 \ldots \right), \]
\[\epsilon = (n - n_0)/n_0, \quad \beta = [(n_n - n_p)/n_0] n_0 \]

From the data the following values are deduced:
\[n_0 = 0.16 \pm 0.015 \text{ fm}^{-3}, \quad \mathcal{E}_{\text{bind}} = -15.6 \pm 0.6 \text{ MeV}, \quad K = 240 \pm 20 \text{ MeV}, \]
\[J = 28 - 33 \text{ MeV}, \quad m_N^* = 0.7 - 0.9 m_N \]

This allows to determine \(C_\sigma, C_\omega, C_\rho \) and 2 parameters of \(\eta_\sigma(f) \)
Scaling functions in our model (MKVOR*)

Different $f(n)$ behaviors in iso-symmetric (ISM, $n_n = n_p$) and beta-equilibrium (BEM) matter.
Hyperon coupling constants

Vector meson couplings – from SU(6) symmetry:

\[g_{\omega \Lambda} = g_{\omega \Sigma} = 2g_{\omega \Xi} = \frac{2}{3}g_{\omega N}, \quad g_{\rho \Lambda} = 0, \quad g_{\rho \Sigma} = 2g_{\rho \Xi} = 2g_{\rho N}, \]

\[2g_{\phi \Lambda} = 2g_{\phi \Sigma} = g_{\phi \Xi} = -\frac{2\sqrt{2}}{3}g_{\omega N}, \quad g_{\phi N} = 0. \]

Scalar meson couplings – from the hyperon binding energies in nuclear matter at \(n = n_0 \):

\[U^H(n_0) = \frac{C^2}{m_N^2} \frac{\omega}{2} x_{\omega H} n_0 - x_{\sigma H} [m_N - m_N^*(n_0)], \]

\[U^\Lambda(n_0) = -28 \text{ MeV}, \quad U^\Sigma(n_0) = 30 \text{ MeV}, \quad U^\Xi(n_0) = -15 \text{ MeV}. \]

Hyperon scalings

(label: \(H\phi \)) Vacuum couplings with \(\phi \), but \(m^*_\phi \) changes in the same way as other hadrons

\[\chi_{\phi B}(f) = 1, \quad \Phi_\phi(f) = 1 - f, \quad \eta_\phi = (1 - f)^2 \]
Inclusion of Δ-isobars

Coupling constants

Coupling constants with vector mesons equal to nucleons’ in the SU(6) symmetry assumption (quark counting):

\[g_\omega \Delta = g_\omega N, \quad g_\rho \Delta = g_\rho N, \quad g_\phi \Delta = 0 \]

Δ coupling with the scalar meson is deduced from the Δ potential at the saturation density:

\[U_\Delta(n_0) = -x_{\sigma \Delta} m_N f_0 + x_{\omega \Delta} C^2_\omega (n_0/m_N^2). \]

U_Δ is poorly constrained by data.

From the quark counting follows* $U_\Delta \simeq U_N$.

We allow for a variation of parameters and consider values $-50 \text{ MeV} > U_\Delta > -100 \text{ MeV}$ in our analysis.

We label models with Δ included by Δ

ISM: Flow constraint

Without Δ the constraint is passed for $n < 4n_0$ in our model
- $-56 \text{ MeV} < U_\Delta$ – second order phase transition (PT)
- $U_\Delta < -56 \text{ MeV}$ – first-order PT
- $-83 \text{ MeV} < U_\Delta < -65 \text{ MeV}$ – pressure curve lies fully within the constraint.
- $U_\Delta \lesssim -95 \text{ MeV}$ – metastable state appears ($P = 0$)

Δ in ISM help to pass the flow constraint!

Can manifest itself in HICs provided $-U_\Delta$ is sufficiently large

Maximum mass: hyperons and Δ

MKVOR$^*H\phi$ – successful model with hyperons

[K. A. M., E. E. Kolomeitsev and D. N. Voskresensky NPA 950 (2016)]

MKVOR$^*H\Delta\phi$ – the same model with Δ included

Δ modify particle fractions, which should significantly affect transport properties of NS medium
Maximum mass: U_{Δ} dependence

\[
\frac{M_{\text{max}}}{M_{\odot}}
\]

\[
U_{\Delta} \quad [\text{MeV}]
\]

\[
-50 \quad -60 \quad -70 \quad -80 \quad -90 \quad -100
\]

\[
2.0 \quad 2.1 \quad 2.2 \quad 2.3
\]

\[
\text{MKVOR}^*H_{\Delta \phi}
\]
Mass-radius relation

Constraints from:

- \(M[\text{PSR J0348 + 0432}] = 2.01 \pm 0.04 M_{\odot} \)
- Quasi-periodical oscillations of 4U 0614+091
- Isolated NS thermal radiation of RX J1856

For \(U_\Delta = -100 \text{ MeV} \) the radius of NSs with \(M = 1.5 \, M_{\odot} \) decreases by \(\approx 1 \text{ km} \), while NS mass decrease is \(\approx 0.04 \, M_{\odot} \).
Gravitational vs baryon mass constraint

\[M_G = 1.249 \pm 0.001 M_\odot, \quad M_B = 1.366 - 1.375 M_\odot \]
dashed box – assuming no mass loss
two rectangles – assuming 0.3 & 1% mass loss

If \(\Delta \) appear at lower densities, the constraint is passed better!
Summary

Conclusion

- In our model an appearance of Δ-resonances is energetically favorable for densities $n \simeq 2 - 3 n_0$ depending on the value of U_Δ
- In the iso-symmetric matter for $U_\Delta > -56 \text{ MeV}$ Δ appear by a third-order phase transition and for $U_\Delta < -56 \text{ MeV}$ by a first-order phase transition. Flow constraint would be passed better if $-83 \text{ MeV} < U_\Delta < -65 \text{ MeV}$
- In neutron star matter the presence of Δ noticeably changes particle fractions and NS radii for strong attractive U_Δ, but doesn’t lead to a significant decrease of a maximum NS mass. Maximum mass constraint is still satisfied.

⇒ Within our model Δ and hyperon puzzles are solved.

Further development of the model

- Incorporating a possibility of meson (ρ^-, π, K) condensation.
- Generalization for finite temperatures for a description of supernova explosions and heavy-ion collisions.