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Introduction

» The equation of state (EoS) of strongly interacting baryonic matter
for various baryon number densities n, temperatures 1" and isospin
asymmetries 3 = (n,, —n,)/n is required for a description of:

> finite nuclei (T'=0, n ~ ng, 8 K 1)
> heavy ion collisions (HIC) (0 < T < 100 — 200 MeV,
0<n<5—10n0, B < 1)
> neutron stars (NS) (T'=0,0<n S 10no, 0 < 8 < 1)
A vast number of constraints follow from the experimental results in
these areas. The EoS at 1" = 0 should:

» Reproduce bulk properties of nuclei

> Pass the constraints for the pressure at T'= 0 from analyses of flows
and kaon production in HIC

> Support the existence of NSs with masses > M[PSR J0348+0432] =
2.01 4 0.04 M — the maximum precisely measured NS mass

> Not contradict the NS cooling data

» Describe the known ratio of baryon and gravitational masses for
PSR J0737-3039(B).



EoS models

There are many EoSs of two types:
Microscopic approaches

» Many-body theories starting from
potentials which reproduce
scattering phases in vacuum

» Robust for low n, large
uncertainties already at n ~ ng

» Non-relativistic approaches =
breaking of causality at higher
densities

Phenomenological approaches
current work

» Models with parameters
(coupling constants, meson
masses, etc.) adjusted to
reproduce the observable
properties

» Relativistic framework =
causality preserved

Phenomenological relativistic mean-field models: successfully described finite
nuclei, HIC and neutron stars



Flow & maximum mass constraint
Constraint for the pressure at T'= 0 in ISM, obtained from analyses of

transverse and elliptic flows in HICs

[ P. Danielewicz, R. Lacey, W.G. Lynch, Science 298 (2002)]

Flow constraint — soft EoSs

Maximum NS mass constraint — stiff EoS
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figures from [T. Klahn et al. PRC74 (2006)]

Additional flexibility needed

> New interaction terms in the Lagrangian
» Density-dependent coupling constants — needs an additional procedure for

restoring self-consistency

> Field-dependent coupling constants <— current work



Hyperon puzzle

If one uses hyperon potentials consistent
with hypernuclear data, then with increasing

free fermion gas
density already at n 2 2 + 3ng conversions

pt+e +— A+,
n+e +——X 4+,

becomes energetically favorable.
[H. Diapo, B.-J. Schaefer and J. Wambach

PRC81 (2010), J. Schaffner-Bielich NPA804 (2008)]
Chemical equilibrium condition (Qp — electric charge of a baryon B):

uB = N — QBle

The appearance of new species results in a softening of the EoS and
maximum NS mass decrease



Hyperon puzzle
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figure from H. Diapo, B.-J. Schaefer and J. Wambach PRC81 (2010)

In a majority of realistic models the maximum NS mass decreases below the
observed values
Problem can be resolved in relativistic mean-field (RMF) models by taking into
account a hadron mass and couplings in-medium modifications
[K. A. M., E. E. Kolomeitsev and D. N. Voskresensky NPA 950 (2016)]



A-resonance puzzle?

A recent work* showed that an appearance of A(1232)-resonances is
possible in the NS medium
Same problem as for hyperons: EoS softens = maximum NS mass can
decrease below the observed limit
How does the inclusion of A-resonances change the EoS in the RMF
model with scaled hadron masses and couplings?

* A. Drago et al. Phys. Rev. C 90 (2014)



Generalized relativistic mean-field model

E. E. Kolomeitsev, D.N. Voskresensky, NPA 759 (2005)
K. A. M., E. E. Kolomeitsev, D.N. Voskresensky, Phys. Lett. B 748 (2015),

present work
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Mean-field approximation

Meson fields are threated as classical fields:
o= <U> =0, w'— <Wu> = (w076)7 Pf - <pf> = 5i3(p076)

Meson mean-field values can be obtained by averaging the equations of
motion by the ground state (analogically for ¢ meson):
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Energy density functional
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Scaling functions

Redefine the scalar field f = gonXon(0)o /MmN,

Without finite size effects only ,, = @Zm(f)/xi“;(f) , M=0,w,p,0
DN (f) = Pm(f) =1 — f,all hadron masses scale the same way
Pu(f) = On(@on(Xou (f)/Xon (f))frn/mu),

ImB = gmB/gmN



Energy density functional
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€ Equation of motion: g—? =0= f(ng).

€D Beta-equilibrium and electrical neutrality conditions (Q;-electric
charge of particle species i):

Mo =ty — Qule

S Qing =0 } = np(n),n;(n)

i=b,l



Saturation properties

For comparing the EoS at the §aturation:

K K L K,
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From the data the following values are deduced:

no=0.16 £ 0.015fm™>,  Eping = —15.6 £ 0.6 MeV, K = 240 + 20 MeV,
J=28-33MeV, my=07-09mpy

This allows to determine C,, C,,, C, and 2 parameters of 7, (f)



Scaling functions in our model (MKVOR¥*)
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Rapid decrease of scaling functions results in limiting the f(n) growth
("cut"method, cf. [K.A.M., D. N. Voskresensky, E. E. Kolomeitsev PRC 92 (2015)] )
Different f(n) behaviors in iso-symmetric (ISM, n,, = n,) and beta-equilibrium
(BEM) matter.
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Hyperon coupling constants

Vector meson couplings — from SU(6) symmetry:
2
JuA = Gus = 2gw: = gng, gpA = 07 gpx = 2ng = 29pN 5
2v/2

2gpA = 2g¢x = ge= = —Tg YeN, goN = 0.

Scalar meson couplings — from the hyperon binding energies in nuclear
matter at n = ng:

02

UH (ng) = —5-TwHNM0 — Lo My — my(no)],
my

UMng) = —28MeV, UZ(ng) =30MeV, UZ(ng) = —15MeV.

Hyperon scalings

(label: H¢) Vacuum couplings with ¢, but my, changes in the same way
as other hadrons

XeB(/)=1, @u(f)=1—f, ny=(1-f)?



Inclusion of A-isobars

Coupling constants

Coupling constants with vector mesons equal to nucleons’ in the SU(6)
symmetry assumption (quark counting):

JwA = JuNs 9pA = GpN, gean =10

A coupling with the scalar meson is deduced from the A potential at the
saturation density:

Ua(no) = —woamn fo + 2waC2(no/m% ).

Un is poorly constrained by data.
From the quark counting follows* Ua ~ Uy.
We allow for a variation of parameters and consider values
—50MeV > Up > —100 MeV in our analysis.
We label models with A included by A

* A.B. Migdal, E.E. Saperstein, M.A. Troitsky and D.N. Voskresensky, Phys. Rept. 192 (1990)
F. Riek, M. F. M. Lutz and C. L. Korpa, Phys. Rev. C 80 (2009)



ISM: Flow constraint

Without A the constraint is passed for n < 4ng in our model
—56 MeV < Ua — second order phase transition (PT)
Ua < —56 MeV - first-order PT
—83MeV < Ua < —65MeV — pressure curve lies fully within the constraint.
Ua S —95MeV — metastable state appears(P = 0)
A in ISM help to pass the flow constraint!
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Can manifest itself in HICs provided —Ua is sufficiently large

Kaon production constraint — [W. G. Lynch et al. Prog. Part. Nucl. Phys. 62 (2009)]



Maximum mass: hyperons and A

MKVOR*H¢ — successful model with hyperons
[K. A. M., E. E. Kolomeitsev and D. N. Voskresensky NPA 950 (2016)]
MKVOR*HA¢ — the same model with A included
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A modify particle fractions, which should significantly affect transport
properties of NS medium



Maximum mass: Ua dependence
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Mass-radius relation

Constraints from:

> M[PSR J0348 + 0432] = 2.01 + 0.04M

» Quasi-periodical oscillations of 4U 06144091
» lIsolated NS thermal radiation of RX J1856
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For Ua = —100MeV the radius of NSs with M = 1.5 M decreases by

1km, while NS mass decrease is ~ 0.04 Mg,
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Gravitational vs baryon mass constraint
Pulsar J0737-3039B: Electron capture SN [ P. Podsiadlowski et al. Mon. Not. R.
Astron. Soc. 361 (2005) 1243. ]
Mg =1.2494+0.001Ms, Mp =1.366—1.375M
dashed box — assuming no mass loss
two rectangles — assuming 0.3 & 1% mass loss
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If A appear at lower densities, the constraint is passed better!



Summary

Conclusion
» In our model an appearance of A-resonances is energetically
favorable for densities n ~ 2 — 3 ng depending on the value of Ua

> In the iso-symmetric matter for Ux > —56 MeV A appear by a
third-order phase transition and for Un < —56 MeV by a first-order
phase transition. Flow constraint would be passed better if
—83MeV < Up < —65MeV

» In neutron star mater the presence of A noticeably changes particle
fractions and NS radii for strong attractive Ua, but doesn’t lead to
a significant decrease of a maximum NS mass. Maximum mass
constraint is still satisfied.

= Within our model A and hyperon puzzles are solved.

Further development of the model

» Incorporating a possibility of meson (p~, m, K) condensation.

» Generalization for finite temperatures for a description of supernova
explosions and heavy-ion collisions.



